会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • PHOTONIC SENSOR PARTICLES AND FABRICATION METHODS
    • 光电传感器颗粒和制造方法
    • WO2005034725A3
    • 2005-08-04
    • PCT/US2004026572
    • 2004-08-13
    • UNIV CALIFORNIALINK JAMIE RSAILOR MICHAEL J
    • LINK JAMIE RSAILOR MICHAEL J
    • A61B20060101B29D11/00G02B6/122
    • B29D11/00663B82Y20/00G01N21/4788G01N21/774G02B6/1225Y10T428/249969
    • The invention is related to optical particles (10), use of optical particles in sensing applications, and methods of fabricating optical particles that can target a desired analyte. The invention is also related to the self­ assembly of individual optical particles. An advantage of the invention is that it includes self-assembling individual photonic crystal sensors onto a target. In an embodiment of the invention, a processed sensor structure having two generally opposing surfaces is provided, wherein each of the opposing surfaces have different surface affinities, with a first optical structure formed on one of the opposing surfaces, and a second optical structure formed on the other of the opposing surfaces. The chemically and optically asymmetric opposing surfaces will spontaneously align at an organic liquid/water interface. Changes in the optical response of at least one of the opposing surfaces indicate the presence of a particular analyte for sensing applications.
    • 本发明涉及光学粒子(10),光学粒子在感测应用中的应用,以及制造可靶向所需分析物的光学粒子的方法。 本发明还涉及单个光学颗粒的自组装。 本发明的一个优点是它包括将单独的光子晶体传感器自组装到目标上。 在本发明的一个实施例中,提供具有两个大致相对的表面的经处理的传感器结构,其中每个相对表面具有不同的表面亲和力,其中形成在一个相对表面上的第一光学结构和形成在 另一个相对的表面。 化学和光学上不对称的相对表面将在有机液体/水界面处自发排列。 至少一个相对表面的光学响应的​​变化表示存在用于感测应用的特定分析物。
    • 3. 发明申请
    • ELECTROADSORPTION AND CHARGE BASED BIOMOLECULE SEPARATION AND DETECTION IN POROUS SENSORS
    • 多孔传感器中的电吸收和电荷分离生物分离与检测
    • WO2012151306A3
    • 2013-03-28
    • PCT/US2012036163
    • 2012-05-02
    • UNIV CALIFORNIASAILOR MICHAEL JCHEN MICHELLE Y
    • SAILOR MICHAEL JCHEN MICHELLE Y
    • G01N27/02G01N21/45G01N35/00
    • G01N27/447
    • Electroadsorption and charged based biomolecule separation, concentration and detection with porous biosensors. In preferred embodiments, a potential is applied to a porous electrode to separate and concentrate molecules from solution. The bimolecular analytes are captured by the porous electrode itself, the same electrode that is used to generate the electric field for electroadsorption. In additional preferred embodiments, pH of the solution is adjusted to separate and concentrate biomolecules. Setting the pH equal to the protein isoelectric point was determined by the inventors to maximize concentration of biomolecules into the porous biosensor. The methods include simultaneously optically detecting charged molecules captured by the porous electrode. Methods of the invention are benign to biomolecules of interest, which are demonstrated to retain a high percentage of their activity after being released from the biosensor. Methods of the invention provide label-free detection. Advantageously, small voltages and ultrasmall volumes of solution are used in methods of the invention.
    • 电吸收和带电的生物分子分离,浓度和多孔生物传感器的检测。 在优选的实施方案中,将电位施加到多孔电极以从溶液中分离和浓缩分子。 双分子分析物被多孔电极本身捕获,这是用于产生电吸附电场的相同电极。 在另外的优选实施方案中,调节溶液的pH以分离和浓缩生物分子。 通过发明人确定等于蛋白质等电点的pH以使生物分子的浓度最大化到多孔生物传感器中。 所述方法包括同时光学检测由多孔电极捕获的带电分子。 本发明的方法对于感兴趣的生物分子是良性的,其被证明在从生物传感器释放后保留其高活性百分比。 本发明的方法提供无标记检测。 有利地,在本发明的方法中使用小电压和超小体积的溶液。
    • 9. 发明申请
    • CARBON AND CARBON/SILICON COMPOSITE NANOSTRUCTED MATERIALS AND CASTING FORMATION METHOD
    • 碳与碳/硅复合纳米结构材料与铸造成形方法
    • WO2012050966A3
    • 2012-08-16
    • PCT/US2011053965
    • 2011-09-29
    • UNIV CALIFORNIASAILOR MICHAEL JKELLY TIMOTHY L
    • SAILOR MICHAEL JKELLY TIMOTHY L
    • B82B3/00B82B1/00C01B31/02
    • C01B31/022B82B1/00B82Y30/00B82Y40/00C01B32/158C01B32/16C01B32/166D01D5/00D01F9/14G02B1/005Y10T428/249994Y10T428/2918
    • The invention provides nanostructure composite porous silicon and carbon materials, and also provides carbon nanofiber arrays having a photonic response in the form of films or particles. Composite materials or carbon nanofiber arrays of the invention are produced by a templating method of the invention, and the resultant nanomaterials have a predetermined photonic response determined by the pattern in the porous silicon template, which is determined by etching conditions for forming the porous silicon. Example nanostructures include rugate filters, single layer structures and double layer structures. In a preferred method of the invention, a carbon precursor is introduced into the pores of a porous silicon film. Carbon is then formed from the carbon precursor. In a preferred method of the invention, liquid carbon-containing polymer precursor is introduced into the pores of an porous silicon film. The precursor is thermally polymerized to form a carbon-containing polymer in the pores of the porous silicon film, which is then thermally carbonized to produce the nanostructured composite material. A carbon nanofiber array is obtained by dissolving the porous silicon. A carbon nanofiber array can be maintained as a film in liquid, and particles can be formed by drying the material.
    • 本发明提供纳米结构复合多孔硅和碳材料,并且还提供具有膜或颗粒形式的光子响应的碳纳米纤维阵列。 本发明的复合材料或碳纳米纤维阵列通过本发明的模板化方法生产,并且所得到的纳米材料具有由多孔硅模板中的图案确定的预定光子响应,所述图案由用于形成多孔硅的蚀刻条件确定。 示例性纳米结构包括皱纹滤波器,单层结构和双层结构。 在本发明的优选方法中,碳前体被引入到多孔硅膜的孔中。 然后由碳前体形成碳。 在本发明的优选方法中,将液体含碳聚合物前体引入到多孔硅膜的孔中。 将前体热聚合以在多孔硅膜的孔中形成含碳聚合物,然后将其热碳化以制备纳米结构复合材料。 碳纳米纤维阵列通过溶解多孔硅而获得。 碳纳米纤维阵列可以作为膜保持在液体中,并且可以通过干燥材料来形成粒子。
    • 10. 发明申请
    • TEMPERATURE RESPONSE SENSING AND CLASSIFICATION OF ANALYTES WITH POROUS OPTICAL FILMS
    • 具有多孔光学薄膜的分析仪的温度响应感应和分类
    • WO2012012437A2
    • 2012-01-26
    • PCT/US2011044549
    • 2011-07-19
    • UNIV CALIFORNIASAILOR MICHAEL JKING BRIANNODA SADAFUMI
    • SAILOR MICHAEL JKING BRIANNODA SADAFUMI
    • G01N21/25G01M11/00G01N25/00
    • G01N21/25G01N21/171Y10T436/153333
    • Methods and systems of the invention can determine the identity and quantity of analytes in a vapor. In preferred methods, a porous optical film is exposed to vapor which contains analyte. The porous optical film is heated and its optical response is monitored during heating. An optical response observed via heating can determine the identity and/or quantity of the analyte. In preferred embodiments, optical response during a thermal pulse is compared to a database of sensor responses that are characteristic of various analytes. Preferred methods are conducted a relatively low temperatures, for example below about 200°C. In preferred methods, a heating and cooling cycle produces a hysteresis curve in the optical response that is indicative of analytes. In preferred embodiments, a thermal reset pulse resets the porous optical film for later use and also provides an optical response that can be used for sensing.
    • 本发明的方法和系统可以确定蒸汽中分析物的身份和数量。 在优选的方法中,多孔光学膜暴露于含有分析物的蒸汽。 加热多孔光学膜并在加热期间监测其光学响应。 通过加热观察到的光学响应可以确定分析物的身份和/或数量。 在优选实施例中,将热脉冲期间的光学响应与各种分析物的特征的传感器响应的数据库进行比较。 优选的方法进行相对较低的温度,例如低于约200℃。 在优选的方法中,加热和冷却循环在指示分析物的光学响应中产生滞后曲线。 在优选实施例中,热复位脉冲复位多孔光学膜用于稍后使用,并且还提供可用于感测的光学响应。