会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明专利
    • Garnet-type lithium ion-conducting oxide
    • GARNET型锂离子导电氧化物
    • JP2010202499A
    • 2010-09-16
    • JP2010014341
    • 2010-01-26
    • Toyota Central R&D Labs Inc株式会社豊田中央研究所
    • OTA SHINGOKOBAYASHI TETSUOASAOKA MASAHIKO
    • C01G33/00C01G25/00H01M10/0562
    • Y02E60/12
    • PROBLEM TO BE SOLVED: To provide a garnet-type lithium ion-conducting oxide which is a garnet type oxide having high chemical stability and a wide potential window and further high conductivity. SOLUTION: The garnet-type lithium ion-conducting oxide is one represented by a formula Li 5+X La 3 (Zr X , A 2-X )O 12 , (in the formula, A is at least one selected from the group consisting of Sc, Ti, V, Y, Nb, Hf, Ta, Al, Si, Ga, Ge, and Sn and X satisfies the inequality 1.4≤X 7 La 3 Zr 2 O 12 , and when the intensity of (220) diffraction peak in an X-ray diffraction (XRD) pattern is normalized to 1, the normalized intensity in the (024) diffraction peak is 9.2 or more. COPYRIGHT: (C)2010,JPO&INPIT
    • 要解决的问题:提供石榴石型锂离子传导性氧化物,其是具有高化学稳定性和宽电势窗口以及更高导电性的石榴石型氧化物。 石榴石型锂离子传导性氧化物是由式Li(SB)5 + X La (Zr X (式中,A为选自Sc,Ti,V,Y,Nb,Hf中的至少一种),(式中,A为选自Sc,Ti,V,Y,Nb,Hf ,Ta,Al,Si,Ga,Ge,Sn和X满足不等式1.4≤X<2)。 第二种石榴石型锂离子传导性氧化物是通过将具有与Zr不同的离子半径的元素替换为组成式Li SB <3> / 当X射线衍射(XRD)图谱中的(220)衍射峰的强度归一化为1时,归一化强度为 (024)衍射峰为9.2以上。 版权所有(C)2010,JPO&INPIT
    • 5. 发明专利
    • Lithium secondary battery and electrode for the same
    • 锂二次电池和电极
    • JP2011159528A
    • 2011-08-18
    • JP2010020943
    • 2010-02-02
    • Toyota Central R&D Labs Inc株式会社豊田中央研究所
    • MATSUO HIDEHITOOTA SHINGOSAWADA HIROSHIKOBAYASHI TETSUOASAOKA MASAHIKO
    • H01M10/058H01M4/13H01M10/052H01M10/0566
    • Y02E60/122
    • PROBLEM TO BE SOLVED: To provide a lithium secondary battery enhancing safety and performing more stable charging and discharging as well. SOLUTION: The lithium secondary battery 10 includes a cathode 13 in which a cathode active material layer 12 is formed on a current collector 11, an anode 18 in which an anode active material layer 17 is formed on a surface of a current collector 14, an insulation layer 19 formed on the surface of the anode active material layer 17, and a nonaqueous electrolyte solution 20 interposed between the cathode 13 and the anode 18. The insulation layer 19 is formed of a garnet-type oxide which contains Zr and conducts lithium ion. The insulation layer 19 is formed of the garnet-type oxide as expressed in a composition formula Li 5+X La 3 (Zr X , A 2-X )O 12 . In the formula, A is an element of one kind or more selected from a group of Sc, Ti, V. Y, Nb, Hf, Ta, Al, Si, Ga and Ge, and X is 1.4≤X COPYRIGHT: (C)2011,JPO&INPIT
    • 要解决的问题:提供一种提高安全性并执行更稳定的充放电的锂二次电池。 解决方案:锂二次电池10包括在集电体11上形成阴极活性物质层12的阴极13,在集电体11的表面上形成有负极活性物质层17的阳极18 14是形成在阳极活性物质层17的表面上的绝缘层19,以及设置在阴极13和阳极18之间的非水电解质溶液20.绝缘层19由含有Zr的石榴石型氧化物形成, 进行锂离子。 绝缘层19由以下组成式表示的石榴石型氧化物形成:组成式Li&lt; SB&gt; 5 + X&lt; 3&lt; 3&gt;(SB) 2-X )O 12 。 在该式中,A是选自Sc,Ti,V,Y,Nb,Hf,Ta,Al,Si,Ga和Ge中的一种以上的元素,X为1.4≤X<2。 绝缘层19可以形成在阴极活性物质层12的表面上。版权所有:(C)2011,JPO&INPIT
    • 6. 发明专利
    • Method and apparatus of detecting state of lithium ion secondary battery
    • 检测锂离子二次电池状态的方法和装置
    • JP2009244088A
    • 2009-10-22
    • JP2008090771
    • 2008-03-31
    • Toyota Central R&D Labs Inc株式会社豊田中央研究所
    • KOBAYASHI TETSUOSASAKI GENTAKEUCHI YOJIUKYO YOSHIO
    • G01R31/36H01M10/0525H01M10/48
    • Y02E60/122
    • PROBLEM TO BE SOLVED: To more easily detect the state of a lithium ion secondary battery.
      SOLUTION: The lithium ion secondary battery 10 includes a positive electrode sheet 13 having a positive electrode active material 12 capable of absorbing/releasing lithium ions; a negative electrode sheet 18 including a negative electrode active material 17 capable of absorbing/releasing lithium ions; and a nonaqueous electrolyte 20 interposed between the positive electrode sheet 13 and the negative electrode sheet 18. An AC voltage and/or an AC current of a specific frequency is input to the lithium ion secondary battery 10, and the state of the lithium ion secondary battery is detected on the basis of a phase difference of an output with respect to the input. For example, by obtaining the phase differences at a frequencies in a range of 0.1 Hz or more and less than 10 Hz (for example, 2 Hz) and in a range of 10 Hz or more and not more than 300 Hz (for example, 100 Hz), as the specific frequencies, the battery deterioration state and lithium metal deposition state at the negative electrode as the states of the lithium ion secondary battery are preferably determined.
      COPYRIGHT: (C)2010,JPO&INPIT
    • 要解决的问题:为了更容易地检测锂离子二次电池的状态。 解决方案:锂离子二次电池10包括具有能够吸收/释放锂离子的正极活性物质12的正极片13; 包括能够吸收/释放锂离子的负极活性物质17的负极片18; 以及介于正极片13和负极片18之间的非水电解质20.向锂离子二次电池10输入特定频率的交流电压和/或交流电流,锂离子二次电池 基于输出相对于输入的相位差来检测电池。 例如,通过在0.1Hz以上且小于10Hz(例如2Hz)的范围内,在10Hz以上且300Hz以下的范围内获得相位差(例如, 100Hz),作为特定频率,优选确定锂离子二次电池的状态下的负极的电池劣化状态和锂金属析出状态。 版权所有(C)2010,JPO&INPIT
    • 7. 发明专利
    • Method of detection, detector and program
    • 检测方法,检测器和程序
    • JP2013185894A
    • 2013-09-19
    • JP2012050201
    • 2012-03-07
    • Toyota Central R&D Labs Inc株式会社豊田中央研究所
    • AOKI YOSHIFUMIKAWAUCHI SHIGEHIROKOBAYASHI TETSUOKONDO YASUHITO
    • G01N24/10H01M10/052H01M10/48
    • Y02E60/122Y02T10/7011
    • PROBLEM TO BE SOLVED: To detect precipitated lithium in a lithium secondary battery with high sensitivity.SOLUTION: A precipitation detector 10 of the invention comprises: a cavity in which a lithium secondary battery is placed as a sample; an electromagnet for applying a magnetic field to the cavity; a microwave unit for oscillating microwaves to the cavity; a detector for detecting the microwave absorption of the sample; and a control section for detecting precipitated lithium in the sample on the basis of a detected signal. A method of detection includes the steps of: splitting a spin level of lithium precipitated in the sample by applying a magnetic field to the cavity of an electron spin resonance device in which the lithium secondary battery is placed as a sample; detecting a signal based on a resonance phenomenon generated by oscillating microwaves to the cavity; and detecting the precipitated lithium in the sample on the basis of the detected signal.
    • 要解决的问题:以高灵敏度检测锂二次电池中的析出的锂。解决方案:本发明的沉淀检测器10包括:其中放置锂二次电池作为样品的空腔; 用于向腔施加磁场的电磁体; 用于将微波振荡到空腔的微波单元; 用于检测样品的微波吸收的检测器; 以及控制部,其基于检测信号检测样品中的析出的锂。 一种检测方法包括以下步骤:通过向其中放置锂二次电池作为样品的电子自旋共振装置的腔施加磁场来分离在样品中析出的锂的自旋水平; 基于由振荡的微波产生的谐振现象来检测信号到腔; 并根据检测到的信号检测样品中析出的锂。
    • 9. 发明专利
    • Method for manufacturing composite, composite, and alkaline metal secondary battery including the same
    • 制造复合材料,复合材料和碱金属二次电池的方法
    • JP2012059529A
    • 2012-03-22
    • JP2010201351
    • 2010-09-08
    • Toyota Central R&D Labs Inc株式会社豊田中央研究所
    • MATSUO HIDEHITOOTA SHINGOSAWADA HIROSHIKOBAYASHI TETSUOASAOKA MASAHIKOSEKI JUNTARO
    • H01M10/058H01B1/06H01M10/052H01M10/0562
    • Y02P70/54
    • PROBLEM TO BE SOLVED: To increase energy density and reduce inner resistance furthermore, in an alkaline metal secondary battery.SOLUTION: A method for manufacturing a composite according to the present invention includes: a raw materials forming step of preparing a raw materials forming body including a material of raw materials formed on a surface of a solid electrolyte conducting an alkaline metal, the material of raw materials at least containing raw materials of an active material capable of forming the active material through a reaction with the alkaline metal; and an active material forming step of firing the raw materials forming body and forming the active material on the surface of the solid electrolyte using even the alkaline metal existing on the surface of the solid electrolyte. In the composite according to the present invention, active material particles are formed to be brought into close contact with the surface of the solid electrolyte conducting the alkaline metal, and an alkaline metal compound layer including the alkali metal is not formed between the solid electrolyte and the active material.
    • 要解决的问题:在碱金属二次电池中进一步增加能量密度并降低内阻。 解决方案:根据本发明的复合材料的制造方法包括:原料形成步骤,准备包含在导电碱金属的固体电解质的表面上形成的原料的材料的原料形成体, 原材料至少含有能够通过与碱金属的反应形成活性物质的活性物质的原料; 以及使固体电解质表面上存在的碱金属均匀地烧结原料形成体并在固体电解质的表面形成活性物质的活性物质形成工序。 在根据本发明的复合材料中,形成活性物质颗粒与导电碱金属的固体电解质的表面紧密接触,并且在固体电解质和固体电解质之间不形成包含碱金属的碱金属化合物层 活性物质。 版权所有(C)2012,JPO&INPIT
    • 10. 发明专利
    • All-solid lithium secondary battery
    • 全固态二次电池
    • JP2011054438A
    • 2011-03-17
    • JP2009202826
    • 2009-09-02
    • Toyota Central R&D Labs Inc株式会社豊田中央研究所
    • KOBAYASHI TETSUOAZUMA HIROZUMIOTA SHINGOASAOKA MASAHIKOKAWAMURA JUNICHIKUWATA NAOAKI
    • H01M10/0562C22C12/00C22C28/00H01M4/38H01M10/052H01M10/0585
    • Y02E60/122Y02T10/7011
    • PROBLEM TO BE SOLVED: To provide an all-solid lithium secondary battery which is superior in durability, in the repetition of charging and discharging.
      SOLUTION: The all-solid lithium secondary battery 20 is provided with a conductive layer 22 formed on a substrate 21, and a positive electrode 24, a solid electrolyte layer 26 and a negative electrode 28, formed by being sequentially laminated on the conductive layer 22. A current-collecting lead 23 is connected to the conductive layer 22, and a current-collecting lead 29 is connected to the negative electrode 28. In the all-solid lithium secondary battery 20, the solid electrolyte 26 is formed of lithium phosphate system glass, and the negative electrode 28 is formed of an alloy of indium and antimony. The negative electrode 28 is formed at a composition ratio In/Sb of indium and antimony, in a range of 1.0 or more and 1.2 or less. In addition, the solid electrolyte 26 may be lithium phosphate glass in it entirety, and the lithium phosphate glass may also be formed at least on a surface of the negative electrode 28.
      COPYRIGHT: (C)2011,JPO&INPIT
    • 要解决的问题:为了提供耐久性优异的充电和放电重复的全固态锂二次电池。 解决方案:全固态锂二次电池20设置有形成在基板21上的导电层22,并且正极24,固体电解质层26和负极28通过依次层压在 集电引线23连接到导电层22,集电引线29连接到负电极28.在全固态锂二次电池20中,固体电解质26由 磷酸锂系统玻璃,负极28由铟和锑的合金形成。 负极28以铟和锑的组成比In / Sb形成在1.0以上且1.2以下的范围内。 此外,固体电解质26可以是整体上的磷酸锂玻璃,并且磷酸锂玻璃也可以至少在负极28的表面上形成。版权所有(C)2011,JPO&INPIT