会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 5. 发明授权
    • Liquid-liquid extraction system
    • 液 - 液萃取系统
    • US08252239B2
    • 2012-08-28
    • US12783924
    • 2010-05-20
    • Mami HakariShigenori TogashiYasuhiko Sasaki
    • Mami HakariShigenori TogashiYasuhiko Sasaki
    • B06B1/20B01D11/00B01D17/02
    • B01D11/04B01D11/0265B01D11/0496B01F3/0819B01F11/0283
    • The invention aims to reduce the processing time of liquid-liquid extraction, reduce variations in the amount of extraction of a solute, and improve the extraction efficiency. Provided are a container adapted to contain a continuous phase and a dispersion phase that are mutually immiscible liquids, and a solute dissolved in at least one of the continuous and dispersion phases, a water tank accommodating therein the container and containing water around the container, an emulsification ultrasonic oscillation source disposed outside the water tank, on a plane substantially parallel with the interface between the continuous and dispersion phases, a separation ultrasonic oscillation source disposed outside the water tank, an ultrasonic-oscillation-source driving circuit configured to drive the emulsification ultrasonic oscillation source and the separation ultrasonic oscillation source, and a control unit configured to control the ultrasonic-oscillation-source driving circuit such that it sequentially drives the emulsification ultrasonic oscillation source and the separation ultrasonic oscillation source.
    • 本发明旨在减少液 - 液萃取的处理时间,减少溶质萃取量的变化,提高萃取效率。 提供一种容器,其适于容纳相互不混溶的液体的连续相和分散相,以及溶解在至少一个连续分散相中的溶质,在其中容纳容器并在容器周围容纳水的水箱, 乳化超声波振荡源设置在水箱外部,与基本上平行于连续分散相之间的界面的平面上,设置在水箱外部的分离超声波振荡源,构造成驱动乳化超声波的超声波振荡源驱动电路 振荡源和分离超声波振荡源,以及控制单元,被配置为控制超声波振荡源驱动电路,使得其依次驱动乳化超声波振荡源和分离超声波振荡源。
    • 6. 发明申请
    • LIQUID-LIQUID EXTRACTION SYSTEM
    • 液体萃取系统
    • US20100296976A1
    • 2010-11-25
    • US12783924
    • 2010-05-20
    • Mami HAKARIShigenori TogashiYasuhiko Sasaki
    • Mami HAKARIShigenori TogashiYasuhiko Sasaki
    • B06B1/20B01D11/00B01D17/02
    • B01D11/04B01D11/0265B01D11/0496B01F3/0819B01F11/0283
    • The invention aims to reduce the processing time of liquid-liquid extraction, reduce variations in the amount of extraction of a solute, and improve the extraction efficiency. Provided are a container adapted to contain a continuous phase and a dispersion phase that are mutually immiscible liquids, and a solute dissolved in at least one of the continuous and dispersion phases, a water tank accommodating therein the container and containing water around the container, an emulsification ultrasonic oscillation source disposed outside the water tank, on a plane substantially parallel with the interface between the continuous and dispersion phases, a separation ultrasonic oscillation source disposed outside the water tank, an ultrasonic-oscillation-source driving circuit configured to drive the emulsification ultrasonic oscillation source and the separation ultrasonic oscillation source, and a control unit configured to control the ultrasonic-oscillation-source driving circuit such that it sequentially drives the emulsification ultrasonic oscillation source and the separation ultrasonic oscillation source.
    • 本发明旨在减少液 - 液萃取的处理时间,减少溶质萃取量的变化,提高萃取效率。 提供一种容器,其适于容纳相互不混溶的液体的连续相和分散相,以及溶解在至少一个连续分散相中的溶质,在其中容纳容器并在容器周围容纳水的水箱, 乳化超声波振荡源设置在水箱外部,与基本上平行于连续分散相之间的界面的平面上,设置在水箱外部的分离超声波振荡源,构造成驱动乳化超声波的超声波振荡源驱动电路 振荡源和分离超声波振荡源,以及控制单元,被配置为控制超声波振荡源驱动电路,使得其依次驱动乳化超声波振荡源和分离超声波振荡源。
    • 7. 发明授权
    • Fluid mixer
    • 流体搅拌机
    • US08287179B2
    • 2012-10-16
    • US12708070
    • 2010-02-18
    • Tetsuro MiyamotoYoshishige EndoShigenori TogashiErika Katayama
    • Tetsuro MiyamotoYoshishige EndoShigenori TogashiErika Katayama
    • B01F5/04
    • B01F5/0665B01F5/0679B01F13/0062B01F13/0066
    • A fluid mixer for mixing a first fluid and a second fluid includes an introducing component having a bore, a cylindrical component fitted into the bore of the introducing component and a mixing component having a conical recess and on which the introducing component and the cylindrical component are held. A first introducing flow path receives the first fluid and a first distributing flow path distributes the first fluid over the whole circumference of the cylindrical component. A second introducing flow path receives the second fluid. A second distributing flow path distributes the second fluid so that the first fluid and the second fluid are alternately arranged in an circumferential direction. A joining part joins together the first fluid and the second fluid fed with the fluids alternately arranged circumferentially.
    • 用于混合第一流体和第二流体的流体混合器包括具有孔的引入部件,装配在引入部件的孔中的圆柱形部件和具有锥形凹部的混合部件,引导部件和圆柱形部件 保持。 第一引入流动路径接收第一流体,并且第一分配流动路径将第一流体分布在圆柱形部件的整个圆周上。 第二引入流路接收第二流体。 第二分配流路分配第二流体,使得第一流体和第二流体沿圆周方向交替布置。 接合部将第一流体和供给有周向交替布置的流体的第二流体连接在一起。
    • 8. 发明授权
    • Measuring apparatus for interaction of biomolecule
    • 生物分子相互作用的测量装置
    • US07629166B2
    • 2009-12-08
    • US11214948
    • 2005-08-31
    • Tetsuro MiyamotoHiroyuki TakeiShigenori TogashiRyo Miyake
    • Tetsuro MiyamotoHiroyuki TakeiShigenori TogashiRyo Miyake
    • C12M1/34
    • G01N21/253G01N21/553G01N35/028G01N35/1095
    • In a measuring apparatus for biomolecule interaction, a fine particle sensor surface is dipped in a buffer solution in a reaction vessel to conduct spectral measurement by way of optical fibers. The buffer solution in the reaction vessel is made to enter an upper reaction vessel and discharged from a flow channel. Air is injected from a flow channel to inject a specimen from the discharge port to the reaction vessel. Then the specimen is sucked into the reaction vessel and brought into contact with the sensor surface where a ligand and an analyte in the specimen are bonded. Bonding is measured by a spectrophotometer through the optical fibers. A buffer solution is injected from the injection flow channel into the reaction vessel and the specimen is discharged out of the flow channel. The dissociation process in which the biomolecules are dissociated along with lowering of the concentration is measured.
    • 在用于生物分子相互作用的测量装置中,将细颗粒传感器表面浸入反应容器中的缓冲溶液中以通过光纤进行光谱测量。 将反应容器中的缓冲溶液进入上反应容器并从流动通道排出。 空气从流动通道注入,将样品从排放口注入反应容器。 然后将样品吸入反应容器中,并与样品中的配体和分析物结合的传感器表面接触。 通过分光光度计通过光纤测量粘合。 将缓冲溶液从注射流通道注入反应容器中,并将样品从流动通道排出。 测量其中生物分子随浓度降低而解离的解离过程。
    • 9. 发明申请
    • MICROORGANISM SEPARATION SYSTEM
    • 微生物分离系统
    • US20080098092A1
    • 2008-04-24
    • US11755944
    • 2007-05-31
    • Tadashi SanoYasuhiko SasakiHajime IkutaKazuichi IsakaTatsuo SuminoShigenori TogashiTetsuro Miyamoto
    • Tadashi SanoYasuhiko SasakiHajime IkutaKazuichi IsakaTatsuo SuminoShigenori TogashiTetsuro Miyamoto
    • G06F15/16C12M1/00
    • C12M47/02C12M47/04
    • A microorganism separation system comprising a sample solution container 34 containing microorganisms, a separator 1, and a receiver 47, designed to separate microorganisms from the sample solution; further comprising a microorganism detection sensor and a plate 49 which has a plurality of receivers 47 connected to each other and an identification indicator, wherein when the microorganism detection sensor judges that a microorganism has passed, supply of the sample solution is stopped, the detected microorganism is discharged together with the sample solution, and then the solution starts to be injected into the receiver; and, the number of times microorganisms are detected during the time period from the start of the injection to the end is recognized as separation quantity; and then as separation information, the separation quantity, number for a receiver 47 into which a microorganism was injected for each identification indicator, signal waveform sent from the microorganism detection sensor at the separation, date and temperature are stored.
    • 一种微生物分离系统,包括含有微生物的样品溶液容器34,分离器1和接收器47,设计用于将微生物与样品溶液分离; 进一步包括微生物检测传感器和板49,其具有彼此连接的多个接收器47和识别指示器,其中当微生物检测传感器判断微生物已经通过时,停止供应样品溶液,检测到的微生物 与样品溶液一起放出,然后溶液开始注入接收器; 并且在从注射开始到结束的时间段期间检测到微生物的次数被识别为分离量; 然后作为分离信息,存储分离量,针对每个识别指示符注入微生物的接收器47的数量,在分离,日期和温度从微生物检测传感器发送的信号波形。
    • 10. 发明申请
    • Measuring apparatus for interaction of biomolecule
    • 生物分子相互作用的测量装置
    • US20070238162A1
    • 2007-10-11
    • US11214948
    • 2005-08-31
    • Tetsuro MiyamotoHiroyuki TakeiShigenori TogashiRyo Miyake
    • Tetsuro MiyamotoHiroyuki TakeiShigenori TogashiRyo Miyake
    • C12M3/00
    • G01N21/253G01N21/553G01N35/028G01N35/1095
    • In a measuring apparatus for biomolecule interaction, a fine particle sensor surface is dipped in a buffer solution in a reaction vessel to conduct spectral measurement by way of optical fibers. The buffer solution in the reaction vessel is made to enter an upper reaction vessel and discharged from a flow channel. Air is injected from a flow channel to inject a specimen from the discharge port to the reaction vessel. Then the specimen is sucked into the reaction vessel and brought into contact with the sensor surface where a ligand and an analyte in the specimen are bonded. Bonding is measured by a spectrophotometer through the optical fibers. A buffer solution is injected from the injection flow channel into the reaction vessel and the specimen is discharged out of the flow channel. The dissociation process in which the biomolecules are dissociated along with lowering of the concentration is measured.
    • 在用于生物分子相互作用的测量装置中,将细颗粒传感器表面浸入反应容器中的缓冲溶液中以通过光纤进行光谱测量。 将反应容器中的缓冲溶液进入上反应容器并从流动通道排出。 空气从流动通道注入,将样品从排放口注入反应容器。 然后将样品吸入反应容器中,并与样品中的配体和分析物结合的传感器表面接触。 通过分光光度计通过光纤测量粘合。 将缓冲溶液从注射流通道注入反应容器中,并将样品从流动通道排出。 测量其中生物分子随浓度降低而解离的解离过程。