会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Method and system for monitoring a workstation
    • 监控工作站的方法和系统
    • US08086730B2
    • 2011-12-27
    • US12464893
    • 2009-05-13
    • Tal DroryEugene WalachAsaf TzadokAmnon Ribak
    • Tal DroryEugene WalachAsaf TzadokAmnon Ribak
    • G06F15/173G08B23/00
    • G06F11/3438G06F11/3414G06F11/3447G06F2201/87
    • A method and system for monitoring a workstation. The system includes a monitoring system for monitoring activity on a workstation and an analysis module for comparing a monitored activity to specified activities in a work profile. The system may include an alert generator for generating an alert if the monitored activity does not conform to the work profile. The work profile may be a user profile of specified activities allowed to be performed by a user, and/or a transaction profile of a sequence of specified activities to be performed in a transaction by a user. The monitoring system includes an inputs monitor for monitoring inputs by the user into the workstation, a screen monitor which extracts content from a screen display viewed by a user, and a physical presence monitor to determine if a user is at his workstation.
    • 一种用于监控工作站的方法和系统。 该系统包括用于监视工作站上的活动的监视系统和用于将监视的活动与工作简档中的指定活动进行比较的分析模块。 如果所监视的活动不符合工作简档,则系统可以包括用于生成警报的警报发生器。 工作简档可以是由用户允许执行的指定活动的用户简档,和/或将由用户在事务中执行的指定活动的序列的事务简档。 监视系统包括用于监视用户进入工作站的输入的输入监视器,从用户观看的屏幕显示中提取内容的屏幕监视器和物理存在监视器,以确定用户是否在他的工作站。
    • 2. 发明申请
    • METHOD AND SYSTEM FOR MONITORING A WORKSTATION
    • 监测工作站的方法和系统
    • US20100293267A1
    • 2010-11-18
    • US12464893
    • 2009-05-13
    • Amnon RibakAsaf TzadokEugene WalachTal Drory
    • Amnon RibakAsaf TzadokEugene WalachTal Drory
    • G06F15/173
    • G06F11/3438G06F11/3414G06F11/3447G06F2201/87
    • A method and system for monitoring a workstation. The system includes a monitoring system for monitoring activity on a workstation and an analysis module for comparing a monitored activity to specified activities in a work profile. The system may include an alert generator for generating an alert if the monitored activity does not conform to the work profile. The work profile may be a user profile of specified activities allowed to be performed by a user, and/or a transaction profile of a sequence of specified activities to be performed in a transaction by a user. The monitoring system includes an inputs monitor for monitoring inputs by the user into the workstation, a screen monitor which extracts content from a screen display viewed by a user, and a physical presence monitor to determine if a user is at his workstation.
    • 一种用于监控工作站的方法和系统。 该系统包括用于监视工作站上的活动的监视系统和用于将监视的活动与工作简档中的指定活动进行比较的分析模块。 如果所监视的活动不符合工作简档,则系统可以包括用于生成警报的警报发生器。 工作简档可以是由用户允许执行的指定活动的用户简档,和/或将由用户在事务中执行的指定活动的序列的事务简档。 监视系统包括用于监视用户进入工作站的输入的输入监视器,从用户观看的屏幕显示中提取内容的屏幕监视器和物理存在监视器,以确定用户是否在他的工作站。
    • 6. 发明授权
    • Distance map-based warping of binary images
    • 二进制图像的基于距离图的扭曲
    • US08611700B2
    • 2013-12-17
    • US13231989
    • 2011-09-14
    • Vladimir KluznerAsaf Tzadok
    • Vladimir KluznerAsaf Tzadok
    • G06K9/32
    • G06K9/32G06K9/3275G06K9/40G06K9/6215G06K2209/01G06T7/37G06T2207/10004G06T2207/20041
    • A method, including calculating a first distance matrix for a first binary image and a second distance matrix for a second binary image, and calculating a first gradient matrix for the first distance matrix and a second gradient matrix for the second distance matrix. Using the calculated distance and gradient matrices, a displacement matrix is calculated that defines a change in position between elements in the first distance matrix and corresponding elements in the second distance matrix. Outlier elements are identified including elements in the displacement matrix satisfying at least one predetermined criterion, and the identified outlier are replaced with calculated interpolated values.
    • 一种方法,包括计算第一二进制图像的第一距离矩阵和第二二进制图像的第二距离矩阵,以及计算第一距离矩阵的第一梯度矩阵和用于第二距离矩阵的第二梯度矩阵。 使用计算的距离和梯度矩阵,计算位移矩阵,其定义第一距离矩阵中的元素与第二距离矩阵中的相应元素之间的位置变化。 识别异常值元素,其包括满足至少一个预定标准的位移矩阵中的元素,并且所识别的异常值被计算的内插值替换。
    • 8. 发明授权
    • Font reproduction in electronic documents
    • 电子文件中的字体再现
    • US08384917B2
    • 2013-02-26
    • US12705651
    • 2010-02-15
    • Asaf Tzadok
    • Asaf Tzadok
    • G06K15/02G06K15/00G06K9/34
    • G06T11/60
    • A method, system, and computer program product for font reproduction in electronic documents are provided. The method includes: receiving an image of a printed document; extracting pairs of consecutive characters from the image of the printed document; storing the extracted pairs as images of the characters; and reproducing the printed document as an electronic document with text of overlapping extracted character pair images. Extracting pairs of consecutive characters includes extracting adjacent horizontal characters, extracting spaced horizontal characters, and extracting spaced vertical characters. Reproducing the printed document as an electronic document includes reproducing the spacing between words and between lines using the spaced horizontal characters and the spaced vertical characters as anchors in the reproduced document.
    • 提供了一种用于电子文档中的字体再现的方法,系统和计算机程序产品。 该方法包括:接收打印文档的图像; 从打印文档的图像中提取成对的连续字符; 将提取的对存储为字符的图像; 并且将打印的文档作为具有重叠提取的字符对图像的文本的电子文档再现。 提取连续字符对包括提取相邻的水平字符,提取间隔的水平字符,并提取间隔的垂直字符。 将打印文档作为电子文档复制包括使用间隔的水平字符和间隔的垂直字符作为再现文档中的锚点来再现字之间和行之间的间隔。
    • 9. 发明授权
    • Fast key-in for machine-printed OCR-based systems
    • 快速键入机器打印的基于OCR的系统
    • US08103132B2
    • 2012-01-24
    • US12060150
    • 2008-03-31
    • Asaf TzadokEugeniusz Walach
    • Asaf TzadokEugeniusz Walach
    • G06K9/03
    • G06K9/033
    • A method for correcting results of OCR or other scanned symbols. Initially scanning and performing OCR classification on a document. Clustering character/symbol classifications resulting from the OCR based on shapes. Creating super-symbols based on at least a first difference in the shapes of the clustered characters/symbols exceeding a first threshold. A carpet of super-symbols, emphasizing localized differences in similar symbols, is displayed for analysis testing. Depending on results of analysis testing, performing one of: (1) storing the clustered symbols when the carpet of super-symbols passes all of the analysis testing; (2) creating additional super-symbols based on at least a second difference in the shapes of the clustered symbols exceeding a second threshold and returning to analysis testing when the carpet of super-symbols passes most of the analysis testing; and (3) rejecting the clustered symbols when the carpet of super-symbols fails most of the analysis testing and manually keying-in the symbols.
    • 一种校正OCR或其他扫描符号结果的方法。 最初扫描并对文档执行OCR分类。 基于形状的OCR产生的聚类字符/符号分类。 基于超过第一阈值的聚集字符/符号的形状的至少第一差异创建超符号。 显示超级符号地毯,强调类似符号的本地化差异,用于分析测试。 根据分析测试的结果,执行以下操作之一:(1)当超符号的地毯通过所有分析测试时,存储聚簇符号; (2)基于超过第二阈值的聚集符号的形状的至少第二差异创建额外的超符号,并返回到超符号的地毯何时通过大部分分析测试的分析测试; 和(3)当超符号的毯子失败大部分分析测试并手动键入符号时,拒绝聚簇符号。
    • 10. 发明授权
    • Adaptive OCR for books
    • 适用于OCR的书籍
    • US07627177B2
    • 2009-12-01
    • US12276907
    • 2008-11-24
    • Asaf TzadokEugeniusz Walach
    • Asaf TzadokEugeniusz Walach
    • G06K9/18
    • G06K9/03G06K9/6256
    • A system is presented for scanning entire books or document all at once using an adaptive process where the book or document has known fonts and unknown fonts. The known fonts are processed through a verification system where sure words and error words are determined. Both the sure words and error words are sent to OCR training where they are re-OCR'ed and repeatedly verified until they meet a predetermined quality criteria. Characters or words not meeting the predetermined quality criteria receive additional OCR training until all the characters and words pass the predetermined quality criteria. Unknown fonts are scanned and clustered together by shape. Outliers in the shapes are manually keyed-in. Those symbols that are manually classified go to OCR training and then to the known type optimization process.
    • 提供了一种用于使用自动过程扫描整本书或文档的系统,其中书或文档已知字体和未知字体。 已知字体通过验证系统进行处理,确定单词和错误字。 将确定的单词和错误词都发送到OCR培训,在那里他们被重新验证并重复验证,直到达到预定的质量标准。 不满足预定质量标准的字符或词语接收额外的OCR训练,直到所有字符和单词通过预定的质量标准。 未知的字体被扫描并通过形状聚集在一起。 形状中的异常值被手动键入。 手动分类的符号进行OCR训练,然后进行已知的类型优化过程。