会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Expandable nozzle mechanism for a rocket engine
    • 用于火箭发动机的可扩展喷嘴机构
    • US5641123A
    • 1997-06-24
    • US360421
    • 1994-12-21
    • Kenji KishimotoYojiro KakumaMasaaki Yasui
    • Kenji KishimotoYojiro KakumaMasaaki Yasui
    • F02K9/97B64D33/04
    • F02K9/976
    • A nozzle extension mechanism for a rocket engine is applied to an engine in an upper stage rocket in a multi-stage rocket. Since a high expansion nozzle to be used in the upper stage rocket engine is long, the rocket is divided at a nozzle portion in view of volume efficiency. The nozzle portion is retracted and received around the upper stage rocket engine and is shifted to a high altitude space. The nozzle portion is assembled for use prior to operation. For this reason, in order to bring the nozzle portion from the retracted condition to the operative condition, it has been necessary to use a drive source, a power device or a shifting device for shifting the nozzle portion. This leads to a weight problem. The devices left in the upper rocket adversely affect the payload. This is resolved by using a fastening portion provided at a rear end of the high expansion nozzle that is received by and then separated from a coupling mechanism provided at a front end portion of the lower stage rocket. Both components are shifted to a high altitude space. The high expansion nozzle is retracted to a rocket engine joint portion following rearward movement of the lower stage rocket upon separation of the lower stage rocket.
    • 用于火箭发动机的喷嘴延伸机构被施加到多级火箭中的上级火箭中的发动机。 由于在上级火箭发动机中使用的高膨胀喷嘴长,因此考虑到体积效率,火箭在喷嘴部分被分割。 喷嘴部分被收回并被接收在上级火箭发动机周围并被转移到高空间。 在操作之前组装喷嘴部分使用。 为此,为了将喷嘴部从缩回状态转移到工作状态,必须使用用于使喷嘴部移动的驱动源,动力装置或换档装置。 这导致重量问题。 留在上层火箭中的装置对有效载荷产生不利影响。 这通过使用设置在高膨胀喷嘴的后端处的紧固部分来解决,该紧固部分由设置在下级火箭的前端部分处的联接机构接收并且随后与其分离。 两个组件都转移到高空间。 随着下级火箭分离,后级火箭向后移动后,高膨胀喷嘴缩回到火箭发动机接头部分。
    • 6. 发明申请
    • ION-CONDUCTING MICROPARTICLE AND METHOD OF MANUFACTURING THE SAME, ION-CONDUCTING COMPOSITE, MEMBRANE ELECTRODE ASSEMBLY (MEA), AND ELECTROCHEMICAL DEVICE
    • 离子导电微粒及其制造方法,导电复合材料,膜电极组件(MEA)和电化学装置
    • US20120100458A1
    • 2012-04-26
    • US13382261
    • 2010-07-07
    • Kenji KishimotoKazuaki FukushimaTakuro Hirakimoto
    • Kenji KishimotoKazuaki FukushimaTakuro Hirakimoto
    • H01M8/10C07F9/30C07F7/18C07F9/48B82Y99/00
    • H01B1/06H01B1/122H01M8/1011H01M8/1016H01M8/1048H01M8/1081Y02E60/523Y02P70/56
    • There are provided an ion-conducting microparticle including an ion-dissociative group and exhibiting an affinity for a fluorine-containing resin, and a method of manufacturing the same, an ion-conducting composite including the ion-conducting microparticle, a membrane electrode assembly (MEA) including the ion-conducting composite as an electrolyte, and an electrochemical device such as a fuel cell. A reacting molecule 13, which includes, in only one end, a second reacting group 14 capable of being bonded to a first reacting group 12, and includes, in a main part and/or the other end, an atom group 5 having an affinity for a fluorine-containing resin, acts on a material microparticle 11 including an ion-dissociative group 3 and the first reacting group 12 on a surface of a base-material microparticle 2, and a reformed group 4, which is bonded at only one end to the surface of the base-material microparticle 2, and includes, in a main part and/or the other end, the atom group 5 having an affinity for a fluorine-containing resin, is introduced into the surface of the base-material microparticle 2 by a reaction between the first reacting group 12 and the second reacting group 14 to form an ion-conducting microparticle 1.
    • 提供了包含离子解离基团并对含氟树脂具有亲和性的离子传导性微粒及其制造方法,包括离子传导性微粒的离子传导性复合体,膜电极接合体 MEA),以及诸如燃料电池的电化学装置。 反应分子13,其仅在一端包含能够与第一反应基团12键合的第二反应基团14,并且在主要部分和/或另一端包括具有亲和力的原子团5 对于含氟树脂,在基材微粒2的表面上作用于包含离子解离基团3和第一反应基团12的材料微粒11和仅在一端结合的重整基团4 在基材微粒2的表面,并且在主体部分和/或另一端包含对含氟树脂具有亲和性的原子团5引入基材微粒的表面 2通过第一反应基团12和第二反应基团14之间的反应形成离子传导微粒子1。
    • 7. 发明申请
    • ION-CONDUCTIVE COMPOSITE, MEMBRANE ELECTRODE ASSEMBLY (MEA), AND ELECTROCHEMICAL DEVICE
    • 离子导电复合材料,膜电极组件(MEA)和电化学装置
    • US20120094209A1
    • 2012-04-19
    • US13380713
    • 2010-06-24
    • Kenji KishimotoKazuaki FukushimaTakuro Hirakimoto
    • Kenji KishimotoKazuaki FukushimaTakuro Hirakimoto
    • H01M8/10B82Y30/00
    • H01B1/122H01M8/102H01M8/1039
    • Provided are an ion-conductive composite containing ion-conductive fine particles and a vinylidene fluoride homopolymer or copolymer and having excellent ion conductivity, a membrane electrode assembly (MEA) including the ion-conductive composite as an electrolyte, and an electrochemical device, such as a fuel cell.An ion-conductive composite is formed of ion-conductive fine particles having an ion-dissociative group and a vinylidene fluoride homopolymer or copolymer. Here, a vinylidene fluoride homopolymer or copolymer having a β-type crystal structure is used. Since polyvinylidene fluoride having the β-type crystal structure has a large dipole moment in a direction that is orthogonal to the direction of the molecular chain, permittivity in the vicinity of ion-conductive fine particles can be kept high, thus facilitating ionic conduction. As a result, the decrease in ion conductivity can be minimized when the composite is formed.
    • 提供了含有离子导电性微粒和偏二氟乙烯均聚物或共聚物并且离子传导性优异的离子传导性复合体,包含作为电解质的离子传导性复合物的膜电极接合体(MEA),以及电化学装置 燃料电池 离子导电性复合体由具有离子解离基团和偏二氟乙烯均聚物或共聚物的离子导电性微粒形成。 这里,使用具有“b”型晶体结构的偏二氟乙烯均聚物或共聚物。 由于具有“b”型晶体结构的聚偏二氟乙烯在与分子链方向正交的方向上具有大的偶极矩,所以可以将离子导电性微粒附近的介电常数保持为高,从而促进离子传导。 结果,当形成复合物时,离子电导率的降低可以最小化。
    • 8. 发明申请
    • POLYMER ELECTROLYTE-CATALYST COMPOSITE STRUCTURE PARTICLE AND MANUFACTURING METHOD THEREOF, ELECTRODE, MEMBRANE ELECTRODE ASSEMBLY (MEA), AND ELECTROCHEMICAL DEVICE
    • 聚合物电解质催化剂复合结构颗粒及其制备方法,电极,膜电极组件(MEA)和电化学装置
    • US20120064431A1
    • 2012-03-15
    • US13321955
    • 2010-06-04
    • Atsushi SatoKenji KishimotoAzumi Nakamura
    • Atsushi SatoKenji KishimotoAzumi Nakamura
    • H01M8/10B05D3/00B05D5/12
    • H01M4/925H01M4/8605H01M4/926H01M8/1004Y02P70/56
    • Polymer electrolyte-catalyst particles that are effective in preventing agglomeration of catalyst particles and polymer electrolyte particles, effective in the formation of ion pathways by polymer electrolyte particles and electron pathways by catalyst particles, and that are able to realize strong catalytic performance by improving the use efficiency of the catalyst particles and a manufacturing method thereof, electrodes formed using such composite structure particles, a membrane electrode assembly (MEA), and an electrochemical device are provided.First, the dispersion liquid in which an ion conducting polymer electrolyte material is dispersed and microparticles 1 are mixed, and the surfaces of the microparticles 1 are coated by an ion conducting polymer electrolyte layer 2 that does not contain a catalyst material. Next, catalyst particles 3 with electron conductivity are added and mixed into the dispersion liquid of after the above step, the catalyst particles 3 are arranged in contact with the polymer electrolyte layer 2, and polymer electrolyte-catalyst composite structure particles 4 are produced. A porous layer that contains the polymer electrolyte-catalyst composite structure particles 4 formed in contact with a power collector becomes an electrode with ion conductivity.
    • 能有效防止催化剂颗粒和聚合物电解质颗粒附聚的聚合物电解质 - 催化剂颗粒,有效地通过聚合物电解质颗粒形成离子通道和催化剂颗粒的电子通路,并且能够通过改进使用来实现强催化性能 提供催化剂颗粒的效率及其制造方法,使用这种复合结构颗粒形成的电极,膜电极组件(MEA)和电化学装置。 首先,将分散有离子导电性聚合物电解质材料的分散液和微粒1混合,将微粒1的表面用不含催化剂材料的离子导电性聚合物电解质层2涂布。 接着,将上述工序后的分散液中加入具有电子传导性的催化剂粒子3,使催化剂粒子3与高分子电解质层2接触,制作高分子电解质 - 催化剂复合结构体4。 含有与集电体接触形成的高分子电解质 - 催化剂复合结构体4的多孔层成为具有离子传导性的电极。