会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 6. 发明申请
    • Method and Apparatus for Measuring Small Displacement
    • 测量小位移的方法和装置
    • US20070219745A1
    • 2007-09-20
    • US11587142
    • 2005-04-22
    • Mitsuo TakedaWei WangNobuo IshiiYoko Miyamoto
    • Mitsuo TakedaWei WangNobuo IshiiYoko Miyamoto
    • G01B11/25
    • G01B11/002G01B11/024G01B11/24G06T7/001G06T7/262G06T7/529G06T7/579G06T2207/30136G06T2207/30164
    • Without using an interferometer, small displacement and/or three-dimensional shape of an object is detected in a noncontact way with high accuracy using pseudo-phase information calculated from e.g., a speckle pattern having a spatially random structure. A speckle image of the test object of the before displacement is obtained, and a spatial frequency spectrum is calculated by executing an N-dimensional Fourier transform for this. The complex analytic signal is obtained by setting the amplitude of frequency spectrum in the half plane including zero frequency in this amplitude distribution to zero, and executing the frequency spectrum amplitude in the half plane of the remainder in the inverse Fourier transform. And then, the amplitude value of this complex analytic signal is replaced with the constant value, a part of the obtained analytic signal domain is clipped, the phase information is calculated by the phase-only correlation function, and the cross-correlation peak in N-dimension is obtained. The displacement magnitude can be obtained by executing the above-mentioned method to the after displacement of the test object, and obtaining the difference of the cross-correlation peak before and after the displacement.
    • 在不使用干涉仪的情况下,使用从例如具有空间随机结构的散斑图案计算的伪相位信息,以非接触方式以非接触方式检测物体的小位移和/或三维形状。 获得前一位移测试对象的斑点图像,并通过执行N维傅立叶变换来计算空间频谱。 通过将该幅度分布中包括零频率的半平面中的频谱的幅度设置为零,并且在逆傅立叶变换中执行余数的半平面中的频谱幅度,获得复数分析信号。 然后,将该复数分析信号的振幅值代入常数值,得到的分析信号域的一部分被剪切,相位信息由相位相关函数计算,N相互相关峰值 - 获得维度。 可以通过对被检体的移位后的上述方法进行位移大小,得到位移前后的互相关峰的差。
    • 7. 发明申请
    • Metal oxide particle and its uses
    • 金属氧化物颗粒及其用途
    • US20070154561A1
    • 2007-07-05
    • US10588526
    • 2005-02-17
    • Mitsuo TakedaRyuji AizawaYumiko MoriTomoyuki Kuwamoto
    • Mitsuo TakedaRyuji AizawaYumiko MoriTomoyuki Kuwamoto
    • A61K9/14A01N25/00
    • A61K8/19A61K8/25A61K8/26A61K8/27A61K8/29A61Q17/04B82Y30/00C01F17/0043C01G9/02C01G15/00C01G23/053C01P2002/52C01P2002/84C01P2004/64C01P2006/60C01P2006/66
    • An object of the present invention is to provide a metal oxide particle which exercises more excellent ultraviolet absorbency as a matter of course and combines therewith merits of, for example, either being shifted in ultraviolet absorption edge toward the longer wavelength side and being excellent also in the absorption efficiency of a long-wavelength range of ultraviolet rays, or having good transparency and, for example, even in cases where added into or coated onto substrates, not damaging the transparency or hue of the substrates. As a means of achieving this object, a metal oxide particle according to the present invention is a metal oxide particle such that a hetero-element is contained in a particle comprising an oxide of a specific metal element (M), wherein the metal oxide particle is: 1) a metal oxide particle in the form of a fine particle wherein the hetero-element is at least one specific metal element (M′); 2) a metal oxide particle wherein the hetero-element includes at least two specific metal elements (M′); 3) a metal oxide particle wherein: the hetero-element is a more specified metal element (M′) and at least a part thereof is 2 in valence; or the metal element (M) is a more specified metal element and the metal oxide particle is in a specific range in crystal grain diameter in the vertical direction to each of the (002) plane and the (100) plane; or 4) a metal oxide particle wherein: the hetero-element is at least one specific nonmetal element and an acyl group is contained in the particle; or the hetero-element includes at least two specific nonmetal elements; or the hetero-element is at least one specific nonmetal element and a component derived from a metal element (M′) other than the metal element (M) is contained in the particle.
    • 本发明的目的在于提供一种金属氧化物粒子,其当然也可以进行更优异的紫外线吸收性的组合,其特征在于,例如在紫外线吸收边缘向长波长侧偏移, 紫外线的长波长范围的吸收效率,或具有良好透明性的吸收效率,例如甚至在添加到基材上或涂布在基材上的情况下,也不损害基板的透明度或色调。 作为实现该目的的手段,根据本发明的金属氧化物粒子是金属氧化物粒子,使得在包含特定金属元素(M)的氧化物的粒子中含有异质元素,其中金属氧化物粒子 是:1)微细颗粒形式的金属氧化物颗粒,其中异质元素是至少一种特定金属元素(M'); 2)金属氧化物颗粒,其中异质元素包括至少两种特定金属元素(M'); 3)一种金属氧化物颗粒,其中:所述异质元素是更加规定的金属元素(M'),并且其至少一部分的价态为2; 或金属元素(M)是更加规定的金属元素,并且金属氧化物粒子在与(002)面和(100)面中的每一个的垂直方向上的晶粒直径的特定范围内; 或4)金属氧化物颗粒,其中:所述异质元素是至少一种特定的非金属元素,并且所述颗粒中包含酰基; 或者异质元素包括至少两种特定的非金属元素; 或异质元素是至少一种特定的非金属元素,并且衍生自金属元素(M')以外的金属元素(M')的成分被包含在颗粒中。
    • 9. 发明授权
    • Three-dimensional shape measuring method
    • 三维形状测量方法
    • US06750975B2
    • 2004-06-15
    • US09995128
    • 2001-11-27
    • Mitsuo TakedaTeruaki YogoHideyuki TanakaRuowei Gu
    • Mitsuo TakedaTeruaki YogoHideyuki TanakaRuowei Gu
    • G01B1124
    • G01B11/2509G06T7/521
    • A three-dimensional shape measuring method by which measurement of a three-dimensional shape is realized with an improved precision. Grid patterns comprising a plurality of one-dimensional grids 1, 2 and 3, each having a period and direction different from those of the others, are simultaneously projected upon objects to be measured, using different colors for each of the one-dimensional grids 1, 2 and 3. Subsequently, a grid image deformed in accordance with the three-dimensional shapes of the objects to be measured is imaged, the grid image is separated by colors into one-dimensional grid components of each color, a phase for each of the one-dimensional grid components is detected, and then, measurement values of the three-dimensional shapes are obtained on the basis of the detected phases. At the same time, by imaging the objects to be measured by use of white light, color information on the objects to be measured are measured as well.
    • 通过精度实现三维形状的测量的三维形状测量方法。 包含多个一维网格1,2和3的网格图案,每个网格图案具有与其它图形不同的周期和方向,同时投射到待测量的对象上,对于每个一维网格1使用不同的颜色 随后,对要被测量物体的三维形状变形的网格图像进行成像,将网格图像由颜色分隔成每种颜色的一维网格分量,每个颜色的相位 检测一维网格分量,然后基于检测到的相位获得三维形状的测量值。 同时,通过使用白光成像待测量的物体,也测量待测物体上的颜色信息。