会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明专利
    • DE69818777D1
    • 2003-11-13
    • DE69818777
    • 1998-07-28
    • TOYOTA MOTOR CO LTD
    • MIYAKE YOSHIHARUMIYOSHI NAOTOTSUJI SHINJI
    • B01D53/94B01J23/38B01J23/40B01J37/02B01J37/03B01J37/16B01J35/10
    • The present invention relates to an alloy catalyst for purifying an exhaust gas, and particularly provides an alloy catalyst excellent in nitrogen oxide purification characteristics in the lean region by improving the catalytic activity by coating first catalytic metal particles with a second metal coagulated phase, and a process for producing the same, the alloy catalyst for purifying an exhaust gas having a structure in which metal coagulated phases being applied to and supported by a metal oxide, and comprising first catalytic metal particles having an average particle size of up to 30 nm, and a second metal coagulated phase containing at least one metal, differing from the catalytic metal particles, and applying to the first catalytic metal particles at a coating ratio of at least 45%, and the process for producing an alloy catalyst for purifying an exhaust gas, comprising the steps of allowing first catalytic metal particles having an average particle size of up to 30 nm to adhere onto a metal oxide, and reduction precipitating a second metal coagulated phase containing at least one metal differing from the first catalytic metal particles thereon, and comprising at least one metal selected from the group consisting of Pt, Pd, Au, Rh, Ag and Ir.
    • 2. 发明专利
    • ALLOY CATALYST AND PROCESS FOR PRODUCING THE SAME
    • CA2246862C
    • 2002-02-12
    • CA2246862
    • 1998-09-10
    • TOYOTA MOTOR CO LTD
    • TSUJI SHINJIMIYOSHI NAOTOMIYAKE YOSHIHARU
    • B01D53/94B01J23/38B01J23/40B01J37/02B01J37/03B01J37/16B01J35/02
    • The present invention relates to an alloy catalyst for purifying an exhaust gas, and particularly provides an alloy catalyst excellent in nitrogen oxide purification characteristics in the lean region by improving the catalytic activity by coating first catalytic metal particles with a second metal coagulated phase, and a process for producing the same, the alloy catalyst for purifying an exhaust gas having a structure in which metal coagulated phases being applied to and supported by a metal oxide, and comprising first catalytic metal particles having an average particle size of up to 30 nm, and a second metal coagulated phase containing at least one metal, differing from the catalytic metal particles, and applying to the first catalytic metal particles at a coating ratio of at least 45%, and the process for producing an alloy catalyst for purifying an exhaust gas, comprising the steps of allowing first catalytic metal particles having an average particle size of up to 30 nm to adhere onto a metal oxide, and reduction precipitating a second metal coagulated phase containing at least one metal differing from the first catalytic metal particles thereon, and comprising at least one metal selected from the group consisting of Pt, Pd, Au, Rh, Ag and Ir.
    • 4. 发明专利
    • DE69413571T2
    • 1999-04-01
    • DE69413571
    • 1994-01-21
    • TOYOTA MOTOR CO LTD
    • MIYAKE YOSHIHARUSUGANUMA TETSUYA
    • C22C21/00C22C21/06C22F1/047
    • The present invention relates to a process for producing a superplastic aluminum alloy capable of being used for plastic working such as extrusion, forging and rolling. An object of the present invention is to provide an ingot-made high speed superplastic aluminum alloy in which superplasticity is developed at a strain rate higher than that of conventional static recrystallization type superplastic aluminum alloys, and a process for producing the same. The superplastic aluminum alloy of the invention has structure which is obtained by adding to a basic alloy containing from at least 4.0 to 15% by weight of Mg and from 0.1 to 1.0% by weight of one or more elements selected from the group consisting of Mm, Zr, V, W, Ti, Ni, Nb, Ca, Co, Mo and Ta, and further selective elements of Sc, Cu, Li, Sn, In and Cd, which contains from 0.1 to 4.0% by volume fraction of spheroidal precipitates of intermetallic compounds having a particle size from 10 to 200 nm, and which has a mean grain size from 0.1 to 10 mu m.
    • 7. 发明专利
    • DE69818777T2
    • 2004-08-19
    • DE69818777
    • 1998-07-28
    • TOYOTA MOTOR CO LTD
    • MIYAKE YOSHIHARUMIYOSHI NAOTOTSUJI SHINJI
    • B01D53/94B01J23/38B01J23/40B01J37/02B01J37/03B01J37/16B01J35/10
    • The present invention relates to an alloy catalyst for purifying an exhaust gas, and particularly provides an alloy catalyst excellent in nitrogen oxide purification characteristics in the lean region by improving the catalytic activity by coating first catalytic metal particles with a second metal coagulated phase, and a process for producing the same, the alloy catalyst for purifying an exhaust gas having a structure in which metal coagulated phases being applied to and supported by a metal oxide, and comprising first catalytic metal particles having an average particle size of up to 30 nm, and a second metal coagulated phase containing at least one metal, differing from the catalytic metal particles, and applying to the first catalytic metal particles at a coating ratio of at least 45%, and the process for producing an alloy catalyst for purifying an exhaust gas, comprising the steps of allowing first catalytic metal particles having an average particle size of up to 30 nm to adhere onto a metal oxide, and reduction precipitating a second metal coagulated phase containing at least one metal differing from the first catalytic metal particles thereon, and comprising at least one metal selected from the group consisting of Pt, Pd, Au, Rh, Ag and Ir.
    • 9. 发明专利
    • DE69413571D1
    • 1998-11-05
    • DE69413571
    • 1994-01-21
    • TOYOTA MOTOR CO LTD
    • MIYAKE YOSHIHARUSUGANUMA TETSUYA
    • C22C21/00C22C21/06C22F1/047
    • The present invention relates to a process for producing a superplastic aluminum alloy capable of being used for plastic working such as extrusion, forging and rolling. An object of the present invention is to provide an ingot-made high speed superplastic aluminum alloy in which superplasticity is developed at a strain rate higher than that of conventional static recrystallization type superplastic aluminum alloys, and a process for producing the same. The superplastic aluminum alloy of the invention has structure which is obtained by adding to a basic alloy containing from at least 4.0 to 15% by weight of Mg and from 0.1 to 1.0% by weight of one or more elements selected from the group consisting of Mm, Zr, V, W, Ti, Ni, Nb, Ca, Co, Mo and Ta, and further selective elements of Sc, Cu, Li, Sn, In and Cd, which contains from 0.1 to 4.0% by volume fraction of spheroidal precipitates of intermetallic compounds having a particle size from 10 to 200 nm, and which has a mean grain size from 0.1 to 10 mu m.