会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明申请
    • PROPOSING OBJECTS TO A USER TO EFFICIENTLY DISCOVER DEMOGRAPHICS FROM ITEM RATINGS
    • 向用户提出对象从物品等级有效发现人口统计学的目标
    • WO2014093621A2
    • 2014-06-19
    • PCT/US2013/074665
    • 2013-12-12
    • THOMSON LICENSINGIOANNIDIS, StratisWEINSBERG, UdiBHAGAT, Smriti
    • IOANNIDIS, StratisWEINSBERG, UdiBHAGAT, Smriti
    • G06Q30/0204G06N5/04G06N7/005G06N99/005G06Q30/0241G06Q30/0278G06Q30/0282
    • The current methods and apparatus provide a system that learns a private attribute, such as gender, based on at least one iteration of presenting an item to a user and receiving ratings from the user for this item. In an exemplary embodiment, the system may solicit ratings for strategically selected items, such as movies for example, and then infers the user's gender. Based on the assessed confidence in the demographic selected, the system may repeat the selection, presentation and ratings of another item. The proposed system can strategically select the sequence of items that are presented to the user for a rating. By selecting the next item to be rated based on a maximum posterior probability confidence, a demographic with a certain threshold of confidence can be inferred. The inventive arrangements are based on novel usage of Bayesian matrix factorization in an active learning setting. Such a system is shown to be feasible and can be carried out using significantly fewer rated items than previously proposed static inference methods.
    • 目前的方法和装置提供了一种系统,其基于至少一次向用户呈现项目的迭代来学习诸如性别的私人属性,并且从用户接收对该项目的评级。 在示例性实施例中,系统可以针对诸如电影的战略选择的项目征求评级,然后推断用户的性别。 根据对所选人口的评估信心,系统可能会重复对另一项目的选择,呈现和评级。 所提出的系统可以策略地选择呈现给用户的评级的项目的顺序。 通过基于最大后验概率置信选择要评级的下一个项目,可以推断具有一定阈值的人口统计学。 本发明的布置基于在主动学习设置中贝叶斯矩阵分解的新颖使用。 这样的系统被证明是可行的,并且可以使用比先前提出的静态推理方法明显更少的额定项目来执行。
    • 4. 发明申请
    • INFERRING USER DEMOGRAPHIC INFORMATION FROM RATINGS
    • 从评分中输入用户人口统计信息
    • WO2014093618A2
    • 2014-06-19
    • PCT/US2013/074662
    • 2013-12-12
    • THOMSON LICENSINGIOANNIDIS, StratisWEINSBERG, UdiBHAGAT, Smriti
    • IOANNIDIS, StratisWEINSBERG, UdiBHAGAT, Smriti
    • G06Q10/10
    • G06Q30/0204G06Q10/06315G06Q30/0282
    • Existing recommendation systems leverage user social and demographic information, e.g., age, gender and political affiliation, to personalize content and make recommendations. However, users do not volunteer this information due to privacy concerns or to the lack of initiative in filling out their profile information. The current methods and apparatus provide principles in which the system may learn the private attribute for those users who do not voluntarily disclose them. In an exemplary embodiment, the system receives ratings for items, such as movies, for example, that may be used by a recommendation system. The inventive arrangements are based on novel usage of Bayesian matrix factorization in an active learning setting. Such a system can be carried out using significantly fewer rated items than previously proposed static inference methods. The system functions effectively without sacrificing the quality of the regular recommendations made to the user.
    • 现有的推荐系统利用用户社会和人口统计信息,例如年龄,性别和政治隶属关系,个性化内容和提出建议。 但是,由于隐私问题或用户填写个人资料信息缺乏主动性,用户不会自愿提供此信息。 目前的方法和设备提供了系统可以为那些不自愿披露他们的用户学习私有属性的原理。 在示例性实施例中,系统接收诸如可由推荐系统使用的诸如电影的项目的等级。 本发明的布置基于在主动学习设置中贝叶斯矩阵分解的新颖使用。 这样的系统可以使用比以前提出的静态推理方法少得多的额定项目来执行。 系统功能有效,不会牺牲对用户的定期建议的质量。
    • 5. 发明申请
    • METHOD AND APPARATUS FOR RECOMMENDATIONS WITH EVOLVING USER INTERESTS
    • 促进用户兴趣的方法和设备
    • WO2014158204A1
    • 2014-10-02
    • PCT/US2013/046776
    • 2013-06-20
    • THOMSON LICENSINGLU, WeiBHAGAT, SmritiIOANNIDIS, Stratis
    • LU, WeiBHAGAT, SmritiIOANNIDIS, Stratis
    • G06Q30/00
    • G06N5/04G06N7/005G06N99/005G06Q30/02
    • A user has an inherent predisposition to have an interest for a particular item. The user's interests may also be affected by what people in her social circle are interested in. To more accurately make recommendations, a user's inherent interests, social influence, how a user responds to recommendations, and/or the user's desire for novelty are taken into consideration. Considering the evolution of users' interests in response to the users' social interactions and users' interactions with the recommender system, the recommendation problem is formulated as an optimization problem to maximize the overall expected utilities of the recommender system. Tractable solutions to the optimization problem are presented for some use cases: (1) when the system does not perform personalization; (2) when the users in the system exhibit attraction dominant behavior; and (3) when the users in the system exhibit aversion dominant behavior.
    • 用户具有对特定项目感兴趣的固有倾向。 用户的兴趣也可能受到社交圈中的人的兴趣的影响。为了更准确地提出建议,用户的固有兴趣,社会影响力,用户对建议的反应和/或用户对新颖性的渴望被采纳 考虑。 考虑到用户的兴趣响应用户的社交交互和用户与推荐系统的交互的演变,推荐问题被制定为优化问题,以最大化推荐系统的整体预期效用。 对于一些用例,提出了优化问题的可解决方案:(1)系统不执行个性化时; (2)系统中的用户表现出吸引力的主导行为; 和(3)当系统中的用户表现出厌恶主导行为时。