会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Method for micromolding ceramic structures
    • 微型陶瓷结构的方法
    • US5735985A
    • 1998-04-07
    • US749256
    • 1996-11-15
    • Syamal K. GhoshEdward P. FurlaniWilliam J. Grande
    • Syamal K. GhoshEdward P. FurlaniWilliam J. Grande
    • B28B3/02B28B1/00B28B7/34C04B35/486C04B35/622B32B31/26B29C33/40
    • B28B7/346B28B1/002C04B35/486C04B35/622B29K2883/00
    • A method for micromolding ceramic articles and structures having spatial features as small as 0.1 .mu.m and having a depth ranging from 2.0 .mu.m to 100 .mu.m. A master mold of the article or structure to be molded is first fabricated using a silicon wafer and dry etching technology. A negative master mold is then produced by placing the silicon master mold device in a surrounding mold form and filling the surrounding mold form with a silicone or silicone rubber, preferably an RTV.TM. (a room temperature-vulcanizing silicone rubber compound). Such material replicates each of the micro features of the master mold in great detail to a resolution on the order of 0.1 .mu.m. The negative master mold is then used in a die to mold the desired individual elements or structures from a ceramic powder which is capable of replicating each of the micro features of the negative master mold to the desired resolution. Depending on the resolution required in a particular micromolded element, it may be necessary to use ceramic nano-particles in the micromolding process. For resolution of spatial features having dimensions as small as 0.1 .mu.m and a depth of about 2.0 .mu.m, ceramic nano-particles ranging in size from about 0.01 .mu.m to about 0.02 .mu.m can be used to micromold these features. If an integral structure is to be created from multiple micromolded ceramic elements, the elements are first assembled prior to sintering. Sintering results in an integration of the assembled elements to form a contiguous structure. A single element, or alternatively, multiple elements can be molded simultaneously from the stone mold cavity preferably using a dry pressing process or, in the alternative, a cold isostatic pressing process.
    • 具有小至0.1μm的空间特征并且深度在2.0μm至100μm之间的陶瓷制品和结构的微成型方法。 首先使用硅晶片和干蚀刻技术来制造待模制的制品或结构的主模具。 然后通过将硅主模具装置放置在周围的模具形状中并用硅树脂或硅橡胶,优选RTV TM(室温硫化硅橡胶复合物)填充周围的模具形状来制造负模具。 这样的材料将主模具的每个微观特征复制到大约0.1μm的分辨率上。 然后将负母模用于模具中以从能够将负母模的每个微特征复制到期望分辨率的陶瓷粉末模制所需的各个元件或结构。 根据特定微成型元件中所需的分辨率,可能需要在微型成型工艺中使用陶瓷纳米颗粒。 为了解决具有小至0.1μm的尺寸和约2.0μm的深度的空间特征,可以使用尺寸为约0.01μm至约0.02μm的陶瓷纳米颗粒来微观地显示这些特征。 如果从多个微成型陶瓷元件产生整体结构,则元件首先在烧结之前组装。 烧结导致组​​合的元件的集成以形成连续的结构。 单个元件或可选地,多个元件可以从石模腔同时模制,优选使用干压工艺,或者替代地,冷等静压制工艺。
    • 2. 发明授权
    • Method for the formation and polarization of micromagnets
    • 微型金刚石的形成和极化方法
    • US5893206A
    • 1999-04-13
    • US795332
    • 1997-02-04
    • Edward P. FurlaniSyamal K. GhoshWilliam J. Grande
    • Edward P. FurlaniSyamal K. GhoshWilliam J. Grande
    • H01F13/00H01F41/02H01F7/06
    • H01F41/0273H01F13/003H01F41/0266Y10S425/033Y10T29/49076
    • A method for making micromagnets and magnets with a micro-polarization pattern on at least one surface thereof. The method includes the steps of molding a ceramic mold form including a cavity therein having a predetermined shape and a serpentine conduit path therethrough adjacent the cavity, the serpentine conduit path having a nominal diameter ranging down to as small as about 50 microns, sintering the mold form, supporting the mold form on a micro-porous substrate within a chamber, flooding one side of the mold form with a molten electrically conductive material, drawing a vacuum within the chamber on an opposite side of the mold form causing the molten electrically conductive material to flow into and through the serpentine conduit path toward the micro-porous substrate, cooling the molten electrically conductive material to form a serpentine electrical conductor in the mold form, forming a ferromagnetic element within the cavity, and imparting a micro-polarization pattern to the ferromagnetic element by transmitting an electrical current through the serpentine conductor.
    • 一种在其至少一个表面上制造具有微偏振图案的微磁体和磁体的方法。 该方法包括以下步骤:模制包括其中具有预定形状的空腔的陶瓷模具形状和邻近空腔穿过的蛇形导管路径,蛇形导管路径的公称直径范围可达到约50微米,烧结模具 将模具形式支撑在腔室内的微孔基材上,用熔融的导电材料浸渍模具形状的一侧,在模具的相对侧上在室内抽真空,引起熔融的导电材料 流入并通过蛇形管道路径朝向微孔基材,冷却熔融的导电材料以形成模具形式的蛇形电导体,在空腔内形成铁磁元件,并向微孔极化图案赋予 铁磁元件通过传输电流通过蛇形导体。
    • 3. 发明授权
    • Micromolded integrated ceramic light reflector
    • 微型集成陶瓷光反射器
    • US5793519A
    • 1998-08-11
    • US749715
    • 1996-11-15
    • Edward P. FurlaniWilliam J. GrandeSyamal K. Ghosh
    • Edward P. FurlaniWilliam J. GrandeSyamal K. Ghosh
    • G02B5/08F21V7/05F21V7/22G02B26/08G02B26/00
    • G02B26/0841
    • A micromolded integrated ceramic light reflector which can be totally integrated with drive and control electronics embedded on the same substrate for use with image projection systems. Each light reflector can be molded to a size on the order of less than one (1) mm.sup.3 using the method of the present invention. Each light reflector includes a ceramic base element with a cavity and one surface thereof. A beam extends from one end of the cavity and cantilevers out therefrom above the cavity. The beam is made from the same ceramic as the base element and is coated with an electrically conductive ceramic coating which is also a good reflector of the visible radiation spectrum. The base of the cavity is coated with the same electrically conductive ceramic, or with a metallic coating. In either case, the coating is electrically grounded. When the beam is in its normal, undeflected position, light incident on the top surface of the beam reflects at a first angle. When a potential is applied to the activation electrode, the beam is deflected downward into the cavity. In this position, light incident on the beam reflects at a second angle. Thus, control of the light output to a given surface over a small spot (pixel) is achieved by controlling the potential across the ceramic light reflector.
    • 微型集成陶瓷光反射器,可以与嵌入在同一基板上的驱动和控制电子元件完全集成,用于图像投影系统。 使用本发明的方法,每个光反射器可以模制成小于一(1)mm 3的尺寸。 每个光反射器包括具有空腔和一个表面的陶瓷基体元件。 梁从空腔的一端延伸,并且在空腔之上悬臂从其上方延伸。 光束由与基底元件相同的陶瓷制成,并涂有导电陶瓷涂层,导电陶瓷涂层也是可见光辐射光谱的良好反射器。 空腔的底部涂覆有相同的导电陶瓷或金属涂层。 在任一种情况下,涂层都是电接地的。 当光束处于其正常的未偏转位置时,入射在光束顶表面上的光以第一角度反射。 当电位施加到激活电极时,光束向下偏转到空腔中。 在该位置,入射在光束上的光以第二角度反射。 因此,通过控制穿过陶瓷光反射器的电位来实现通过小点(像素)对给定表面的光输出的控制。
    • 4. 发明授权
    • Method of making a light reflector
    • 制造光反射器的方法
    • US6071752A
    • 2000-06-06
    • US179503
    • 1998-10-27
    • Edward P. FurlaniWilliam J. GrandeSyamal K. Ghosh
    • Edward P. FurlaniWilliam J. GrandeSyamal K. Ghosh
    • G02B26/08H01L21/00
    • G02B26/085
    • An improved microminiature radiation reflector is formed in a silicon support body with a fabricated cantilever member extending over a cavity that has been etched in the support body. The cantilever member has a reflection surface for reflecting incident radiation to a first position when the cantilever member is not deflected. An electromagnet is formed in the silicon support body adjacent the free end of the cantilever member for deflecting the cantilever member into the cavity of the support body so as to cause incident radiation to be reflected to a second position. An array of radiation reflectors is also disclosed for forming images from electrical signals applied to the electromagnets of selected ones of the radiation reflectors as a function of the position of their reflected radiation in the to be formed image.
    • 改进的微型辐射反射器在硅支撑体中形成,其中制造的悬臂构件在已经在支撑体中蚀刻的空腔上延伸。 当悬臂构件没有偏转时,悬臂构件具有用于将入射辐射反射到第一位置的反射表面。 电磁体形成在硅支撑体中,邻近悬臂构件的自由端,用于将悬臂构件偏转到支撑体的空腔中,以使入射的辐射反射到第二位置。 还公开了一种辐射反射器阵列,用于根据其被选择的辐射反射器的电磁体的电信号来形成图像,作为被成像图像中其反射辐射的位置的函数。
    • 5. 发明授权
    • Apparatus for the formation and polarization of micromagnets
    • 微型磁体的形成和极化的装置
    • US6033198A
    • 2000-03-07
    • US179767
    • 1998-10-27
    • Edward P. FurlaniSyamal K. GhoshWilliam J. Grande
    • Edward P. FurlaniSyamal K. GhoshWilliam J. Grande
    • H01F13/00H01F41/02B29C33/32
    • H01F41/0273H01F13/003H01F41/0266Y10S425/033Y10T29/49076
    • A method for making micromagnets and magnets with a micro-polarization pattern on at least one surface thereof. The method includes the steps of molding a ceramic mold form including a cavity therein having a predetermined shape and a serpentine conduit path therethrough adjacent the cavity, the serpentine conduit path having a nominal diameter ranging down to as small as about 50 microns, sintering the mold form, supporting the mold form on a micro-porous substrate within a chamber, flooding one side of the mold form with a molten electrically conductive material, drawing a vacuum within the chamber on an opposite side of the mold form causing the molten electrically conductive material to flow into and through the serpentine conduit path toward the micro-porous substrate, cooling the molten electrically conductive material to form a serpentine electrical conductor in the mold form, forming a ferromagnetic element within the cavity, and imparting a micro-polarization pattern to the ferromagnetic element by transmitting an electrical current through the serpentine conductor.
    • 一种在其至少一个表面上制造具有微偏振图案的微磁体和磁体的方法。 该方法包括以下步骤:模制包括其中具有预定形状的空腔的陶瓷模具形状和邻近空腔穿过的蛇形导管路径,蛇形导管路径的公称直径范围可达到约50微米,烧结模具 将模具形式支撑在腔室内的微孔基材上,用熔融的导电材料浸渍模具形状的一侧,在模具的相对侧上在室内抽真空,引起熔融的导电材料 流入并通过蛇形管道路径朝向微孔基材,冷却熔融的导电材料以形成模具形式的蛇形电导体,在空腔内形成铁磁元件,并向微孔极化图案赋予 铁磁元件通过传输电流通过蛇形导体。
    • 6. 发明授权
    • Light reflecting micromachined cantilever
    • 光反射微机械悬臂
    • US5898515A
    • 1999-04-27
    • US752134
    • 1996-11-21
    • Edward P. FurlaniWilliam J. GrandeSyamal K. Ghosh
    • Edward P. FurlaniWilliam J. GrandeSyamal K. Ghosh
    • G02B26/08G02B26/00G02B5/08H01L29/82
    • G02B26/085
    • An improved microminiature radiation reflector is formed in a silicon support body with a fabricated cantilever member extending over a cavity that has been etched in the support body. The cantilever member has a reflection surface for reflecting incident radiation to a first position when the cantilever member is not deflected. An electromagnet is formed in the silicon support body adjacent the free end of the cantilever member for deflecting the cantilever member into the cavity of the support body so as to cause incident radiation to be reflected to a second position. An array of radiation reflectors is also disclosed for forming images from electrical signals applied to the electromagnets of selected ones of the radiation reflectors as a function of the position of their reflected radiation in the to be formed image.
    • 改进的微型辐射反射器在硅支撑体中形成,其中制造的悬臂构件在已经在支撑体中蚀刻的空腔上延伸。 当悬臂构件没有偏转时,悬臂构件具有用于将入射辐射反射到第一位置的反射表面。 电磁体形成在硅支撑体中,邻近悬臂构件的自由端,用于将悬臂构件偏转到支撑体的空腔中,以使入射的辐射反射到第二位置。 还公开了一种辐射反射器阵列,用于根据其被选择的辐射反射器的电磁体的电信号来形成图像,作为被成像图像中其反射辐射的位置的函数。
    • 7. 发明授权
    • Method for making ceramic tools for the production of micromagnets
    • 制造微型金属陶瓷工具的方法
    • US5791040A
    • 1998-08-11
    • US795960
    • 1997-02-04
    • Edward P. FurlaniSyamal K. GhoshWilliam J. Grande
    • Edward P. FurlaniSyamal K. GhoshWilliam J. Grande
    • H01F13/00H01F41/02H01F7/06
    • H01F41/0273H01F13/003H01F41/0266Y10T29/49075
    • A method for making ceramic, micro-electromechanical tools which can be used for the production of micromagnets with a multi-pole, micro-polarization pattern. The method includes the steps of molding a plurality of base elements in the form of a generally planar array from a ceramic material, each of the plurality of base elements including a top surface and a bottom surface with a cavity in the top surface, forming a plurality of substantially parallel bores through each of the base elements in the generally planar array adjacent each of said cavities, forming a plurality of recesses in said top and bottom surfaces, the recesses being connected to the plurality of substantially parallel bores, the plurality of substantially parallel bores and the plurality of recesses combining to form a generally serpentine conduit path about the cavity, supporting the generally planar array on a micro-porous substrate within a chamber, flooding one side of the generally planar array with a molten electrically conductive material, drawing a vacuum within the chamber on an opposite side of the generally planar array and beneath the micro-porous substrate causing the molten electrically conductive material to flow into and through the plurality of substantially parallel bores and into the plurality of recesses, cooling the molten electrically conductive material to form a generally serpentine electrical conductor including a plurality of substantially parallel bus bars through each of the base elements, and cutting the generally planar array into a plurality of individual micro-electromechanical tools.
    • 一种用于制造陶瓷微机电工具的方法,其可用于生产具有多极微极化图案的微型磁体。 该方法包括以下步骤:从陶瓷材料模制大致平面阵列形式的多个基体元件,所述多个基体元件中的每一个包括顶表面和在顶表面中具有空腔的底表面,形成 多个大致平行的孔穿过每个所述基本元件,所述基本元件在与每个所述空腔相邻的大致平面阵列中,在所述顶表面和底表面中形成多个凹槽,所述凹槽连接到所述多个基本平行的孔, 平行孔和多个凹部组合以形成围绕腔的大致蛇形管道路径,将大体上平面的阵列支撑在腔室内的微孔基底上,用熔融的导电材料淹没大体平面阵列的一侧, 室内的真空在大致平面阵列的相对侧上并且在微孔基底ca下方 使用熔融的导电材料流入并穿过多个基本平行的孔并进入多个凹部,冷却熔融的导电材料以形成通常蛇形的电导体,其包括通过每个底座的多个基本上平行的汇流条 元件,并将大致平面的阵列切割成多个单独的微机电工具。