会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • SYSTEM FOR ADJUSTING A MAGNETIC FIELD FOR MR AND OTHER USE
    • 用于调整磁场和其他用途的系统
    • US20100127702A1
    • 2010-05-27
    • US12577644
    • 2009-10-12
    • Andreas GreiserRenate JerecicPeter KellmanSaurabh ShahPeter WealeSven Zuehlsdorff
    • Andreas GreiserRenate JerecicPeter KellmanSaurabh ShahPeter WealeSven Zuehlsdorff
    • G01R33/48
    • G01R33/3875G01R33/4828G01R33/543G01R33/56563G01R33/5673
    • An MR magnetic field inhomogeneity compensation system acquires multiple MR data sets representing luminance intensity values of individual image elements comprising corresponding multiple different image versions of at least a portion of a first imaging slice of patient anatomy including fat and water components. The compensation system employs the multiple MR data sets in solving corresponding multiple simultaneous nonlinear equations to calculate local frequency offset associated with magnetic field inhomogeneity at the individual image element location, for an individual image element of the image elements. The local frequency offset comprises a difference between proton spin frequency at the location and a nominal proton spin frequency. The compensation system derives data representing an electrical signal to be applied to magnetic field generation coils to substantially compensate for determined offset frequencies at the plurality of individual locations. A magnetic field generation coil generates a magnetic field in response to applying the electrical signal to substantially compensate for the magnetic field inhomogeneity at the individual image element location.
    • MR磁场不均匀性补偿系统获取多个MR数据集,其表示包括脂肪和水分量的患者解剖结构的第一成像切片的至少一部分的相应多个不同图像形式的各个图像元素的亮度强度值。 补偿系统采用多个MR数据集来解决相应的多个同时非线性方程,以计算与图像元素的单个图像元素相关联的与个体图像元素位置处的磁场不均匀性相关的局部频率偏移。 本地频率偏移包括位置处的质子自旋频率与标称质子自旋频率之间的差异。 补偿系统导出表示要施加到磁场产生线圈的电信号的数据,以基本上补偿多个单独位置处的确定的偏移频率。 磁场产生线圈响应于施加电信号而产生磁场,以基本上补偿各个图像元件位置处的磁场不均匀性。
    • 2. 发明申请
    • System for Dynamically Compensating for Inhomogeneity in an MR Imaging Device Magnetic Field
    • 用于动态补偿MR成像装置磁场中的不均匀性的系统
    • US20100019766A1
    • 2010-01-28
    • US12481649
    • 2009-06-10
    • Sven ZuehlsdorffPeter WealeSaurabh ShahAndreas Greiser
    • Sven ZuehlsdorffPeter WealeSaurabh ShahAndreas Greiser
    • G01R33/44
    • G01R33/3875G01R33/243G01R33/5614
    • A system automatically dynamically compensates for inhomogeneity in an MR imaging device magnetic field. An MR imaging compensation system applies swept frequency magnetic field variation in determining an estimate of proton spin frequency at multiple individual locations associated with individual image elements in an anatomical volume of interest and substantially independently of tissue associated relaxation time. For the multiple individual locations, the system determines an offset frequency comprising a difference between a determined estimate of proton spin frequency associated with an individual image element location and a nominal proton spin frequency. The system derives data representing an electrical signal to be applied to magnetic field generation coils to substantially compensate for determined offset frequencies at the multiple individual locations. An MR magnetic field coil generates a magnetic field in response to applying the electrical signal to substantially compensate for magnetic field variation represented by the determined offset frequencies at the multiple individual locations.
    • 系统自动动态补偿MR成像装置磁场的不均匀性。 MR成像补偿系统应用扫描频率磁场变化来确定在感兴趣的解剖体积中与各个图像元素相关联的多个单独位置处的质子旋转频率的估计,并且基本上独立于组织相关的弛豫时间。 对于多个单独位置,系统确定偏移频率,该偏移频率包括与单个图像元素位置相关联的质子自旋频率的确定估计与标称质子旋转频率之间的差异。 系统导出表示要施加到磁场产生线圈的电信号的数据,以基本上补偿多个单独位置处的确定的偏移频率。 MR磁场线圈响应于施加电信号而产生磁场,以基本上补偿由多个单独位置处确定的偏移频率所表示的磁场变化。
    • 3. 发明授权
    • System for adjusting a magnetic field for MR and other use
    • 用于MR调整磁场的系统及其他用途
    • US08138759B2
    • 2012-03-20
    • US12577644
    • 2009-10-12
    • Andreas GreiserRenate JerecicPeter KellmanSaurabh ShahPeter WealeSven Zuehlsdorff
    • Andreas GreiserRenate JerecicPeter KellmanSaurabh ShahPeter WealeSven Zuehlsdorff
    • G01V3/00
    • G01R33/3875G01R33/4828G01R33/543G01R33/56563G01R33/5673
    • An MR magnetic field inhomogeneity compensation system acquires multiple MR data sets representing luminance intensity values of individual image elements comprising corresponding multiple different image versions of at least a portion of a first imaging slice of patient anatomy including fat and water components. The compensation system employs the multiple MR data sets in solving corresponding multiple simultaneous nonlinear equations to calculate local frequency offset associated with magnetic field inhomogeneity at the individual image element location, for an individual image element of the image elements. The local frequency offset comprises a difference between proton spin frequency at the location and a nominal proton spin frequency. The compensation system derives data representing an electrical signal to be applied to magnetic field generation coils to substantially compensate for determined offset frequencies at the plurality of individual locations. A magnetic field generation coil generates a magnetic field in response to applying the electrical signal to substantially compensate for the magnetic field inhomogeneity at the individual image element location.
    • MR磁场不均匀性补偿系统获取多个MR数据集,其表示包括脂肪和水分量的患者解剖结构的第一成像切片的至少一部分的相应多个不同图像形式的各个图像元素的亮度强度值。 补偿系统采用多个MR数据集来解决相应的多个同时非线性方程,以计算与图像元素的单个图像元素相关联的与个体图像元素位置处的磁场不均匀性相关的局部频率偏移。 本地频率偏移包括位置处的质子自旋频率与标称质子自旋频率之间的差异。 补偿系统导出表示要施加到磁场产生线圈的电信号的数据,以基本上补偿多个单独位置处的确定的偏移频率。 磁场产生线圈响应于施加电信号而产生磁场,以基本上补偿各个图像元件位置处的磁场不均匀性。
    • 4. 发明申请
    • Enhanced Contrast MR System Accommodating Vessel Dynamic Fluid Flow
    • 增强对比MR系统容纳动态流体流动
    • US20100014735A1
    • 2010-01-21
    • US12436917
    • 2009-05-07
    • Xiaoming BiPeter SchmittRenate JerecicPeter WealeSven Zuehlsdorff
    • Xiaoming BiPeter SchmittRenate JerecicPeter WealeSven Zuehlsdorff
    • G06K9/00
    • G01R33/5635G01R33/4835G01R33/5601G01R33/5607
    • A system enhances MR imaging contrast between vessels containing dynamically flowing blood and static tissue using an MR imaging system. The MR imaging system, in response to a heart rate synchronization signal, acquires an anatomical preparation data set representing a spatially non-localized preparation 3D volume in response to a first magnetization preparation pulse sequence. The MR imaging system acquires a spatially localized anatomical imaging data set representing a second imaging volume. The MR imaging system subtracts slice specific MR imaging data of the spatially localized anatomical imaging data set from spatially and temporally corresponding slice specific imaging data of the anatomical preparation data set to derive blood flow indicative imaging data. The temporally corresponding slice specific imaging data comprises data acquired at a substantially corresponding cycle point within a heart beat cycle determined in response to said heart rate synchronization signal. The MR imaging system iteratively repeats the subtraction step for multiple adjacent slices individually comprising a spatially localized anatomical imaging data set to provide a three-dimensional imaging data set.
    • 系统通过使用MR成像系统来增强含有动态流动的血液和静脉组织的血管之间的MR成像对比度。 MR成像系统响应于心率同步信号,响应于第一磁化准备脉冲序列获取表示空间非局部化准备3D体积的解剖准备数据集。 MR成像系统获取表示第二成像体积的空间局部解剖成像数据集。 MR成像系统从解剖准备数据集的空间和时间上对应的切片特异性成像数据中减去空间局部解剖成像数据集的切片特定MR成像数据,以导出血流指示成像数据。 时间上对应的切片特定成像数据包括在响应于所述心率同步信号确定的心跳周期内的基本对应的周期点获取的数据。 MR成像系统迭代重复多个相邻切片的减法步骤,该相邻切片单独地包括空间定位的解剖学成像数据集以提供三维成像数据集。
    • 5. 发明授权
    • System for dynamically improving medical image acquisition quality
    • 动态改善医学影像采集质量的系统
    • US08520920B2
    • 2013-08-27
    • US12897878
    • 2010-10-05
    • Jens GuehringPeter WealeSven Zuehlsdorff
    • Jens GuehringPeter WealeSven Zuehlsdorff
    • G06K9/00A61B5/00
    • A61B6/5258A61B6/545G06F19/00G06T7/0014G06T2207/10072G06T2207/20092G06T2207/30004G06T2207/30168
    • A system dynamically improves quality of medical images using at least one processing device including an image analyzer, a correction processor and a message generator. The image analyzer automatically parses and analyzes data representing an image of a particular anatomical feature of a patient acquired by a medical image acquisition device to identify defects in the image by examining the data representing the image for predetermined patterns associated with image defects. The correction processor uses a predetermined information map associating image defects with corresponding corrective image acquisition parameters to determine corrected image acquisition parameters for use in re-acquiring an image using the image acquisition device in response to an identified defect. The message generator generates a message for presentation to a user indicating an identified defect and suggesting use of the corrected image acquisition parameters for re-acquiring an image.
    • 使用包括图像分析器,校正处理器和消息发生器的至少一个处理装置,系统动态地提高医学图像的质量。 图像分析器自动解析和分析表示由医学图像采集设备获取的患者的特定解剖特征的图像的数据,以通过检查表示与图像缺陷相关联的预定图案的图像的数据来识别图像中的缺陷。 校正处理器使用将图像缺陷与对应的校正图像获取参数相关联的预定信息图来确定校正的图像获取参数,以响应于所识别的缺陷,使用图像获取装置重新获取图像。 消息发生器产生用于向用户呈现指示所识别的缺陷的消息,并建议使用校正的图像获取参数来重新获取图像。
    • 8. 发明授权
    • Enhanced contrast MR system accommodating vessel dynamic fluid flow
    • 增强的对比MR系统适应血管动态流体流动
    • US08165371B2
    • 2012-04-24
    • US12436917
    • 2009-05-07
    • Xiaoming BiPeter SchmittRenate JerecicPeter WealeSven Zuehlsdorff
    • Xiaoming BiPeter SchmittRenate JerecicPeter WealeSven Zuehlsdorff
    • G06K9/00
    • G01R33/5635G01R33/4835G01R33/5601G01R33/5607
    • A system enhances MR imaging contrast between vessels containing dynamically flowing blood and static tissue using an MR imaging system. The MR imaging system, in response to a heart rate synchronization signal, acquires an anatomical preparation data set representing a spatially non-localized preparation 3D volume in response to a first magnetization preparation pulse sequence. The MR imaging system acquires a spatially localized anatomical imaging data set representing a second imaging volume. The MR imaging system subtracts slice specific MR imaging data of the spatially localized anatomical imaging data set from spatially and temporally corresponding slice specific imaging data of the anatomical preparation data set to derive blood flow indicative imaging data. The temporally corresponding slice specific imaging data comprises data acquired at a substantially corresponding cycle point within a heart beat cycle determined in response to said heart rate synchronization signal. The MR imaging system iteratively repeats the subtraction step for multiple adjacent slices individually comprising a spatially localized anatomical imaging data set to provide a three-dimensional imaging data set.
    • 系统通过使用MR成像系统来增强含有动态流动的血液和静脉组织的血管之间的MR成像对比度。 MR成像系统响应于心率同步信号,响应于第一磁化准备脉冲序列获取表示空间非局部化准备3D体积的解剖准备数据集。 MR成像系统获取表示第二成像体积的空间局部解剖成像数据集。 MR成像系统从解剖准备数据集的空间和时间上对应的切片特异性成像数据中减去空间局部解剖成像数据集的切片特定MR成像数据,以导出血流指示成像数据。 时间上对应的切片特定成像数据包括在响应于所述心率同步信号确定的心跳周期内的基本对应的周期点获取的数据。 MR成像系统迭代重复多个相邻切片的减法步骤,该相邻切片单独地包括空间定位的解剖学成像数据集以提供三维成像数据集。
    • 9. 发明申请
    • System for Dynamically Improving Medical Image Acquisition Quality
    • 动态改善医学图像采集质量体系
    • US20110110572A1
    • 2011-05-12
    • US12897878
    • 2010-10-05
    • Jens GuehringPeter WealeSven Zuehlsdorff
    • Jens GuehringPeter WealeSven Zuehlsdorff
    • G06K9/00
    • A61B6/5258A61B6/545G06F19/00G06T7/0014G06T2207/10072G06T2207/20092G06T2207/30004G06T2207/30168
    • A system dynamically improves quality of medical images using at least one processing device including an image analyzer, a correction processor and a message generator. The image analyzer automatically parses and analyzes data representing an image of a particular anatomical feature of a patient acquired by a medical image acquisition device to identify defects in the image by examining the data representing the image for predetermined patterns associated with image defects. The correction processor uses a predetermined information map associating image defects with corresponding corrective image acquisition parameters to determine corrected image acquisition parameters for use in re-acquiring an image using the image acquisition device in response to an identified defect. The message generator generates a message for presentation to a user indicating an identified defect and suggesting use of the corrected image acquisition parameters for re-acquiring an image.
    • 使用包括图像分析器,校正处理器和消息发生器的至少一个处理装置,系统动态地提高医学图像的质量。 图像分析器自动解析和分析表示由医学图像采集设备获取的患者的特定解剖特征的图像的数据,以通过检查表示与图像缺陷相关联的预定图案的图像的数据来识别图像中的缺陷。 校正处理器使用将图像缺陷与对应的校正图像获取参数相关联的预定信息图来确定校正的图像获取参数,以响应于所识别的缺陷,使用图像获取装置重新获取图像。 消息发生器产生用于向用户呈现指示所识别的缺陷的消息,并建议使用校正的图像获取参数来重新获取图像。