会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Shallow trench isolation (STI) with trench liner of increased thickness
    • 浅沟槽隔离(STI),沟槽衬垫厚度增加
    • US07989911B1
    • 2011-08-02
    • US12607868
    • 2009-10-28
    • Sunil MehtaStewart LogieSteven Fong
    • Sunil MehtaStewart LogieSteven Fong
    • H01L21/70
    • H01L21/76224
    • In one embodiment, an integrated circuit includes a substrate having high voltage transistor regions and low voltage transistor regions. The substrate includes a first trench between and adjacent to the high voltage transistor regions, a second trench between and adjacent to the low voltage transistor regions, and a third trench between the first and second trenches and between and adjacent to a high voltage transistor region and a low voltage transistor region. A thicker silicon dioxide layer lines the first trench and a first portion of the third trench adjacent to a high voltage transistor region. A thinner silicon dioxide layer lines the second trench and a second portion of the third trench adjacent to a low voltage transistor region. A silicon nitride layer is present on the thinner silicon dioxide layer and lines the second trench and the second portion of the third trench but is not present on the thicker silicon dioxide layer and does not line the first trench and the first portion of the third trench.
    • 在一个实施例中,集成电路包括具有高电压晶体管区域和低压晶体管区域的衬底。 衬底包括在高电压晶体管区域之间和之间相邻的第一沟槽,在低电压晶体管区域之间和之间的第二沟槽,以及在第一和第二沟槽之间并且在高压晶体管区域之间和之间的第三沟槽,以及 低压晶体管区域。 较厚的二氧化硅层将第一沟槽和第三沟槽的与高压晶体管区域相邻的第一部分排列。 更薄的二氧化硅层将第二沟槽和第三沟槽的与低压晶体管区域相邻的第二部分排列。 氮化硅层存在于较薄的二氧化硅层上,并且使第二沟槽和第三沟槽的第二部分排列,但是不存在于较厚的二氧化硅层上,并且不使第一沟槽和第三沟槽的第一部分 。
    • 2. 发明授权
    • Shallow trench isolation (STI) with trench liner of increased thickness
    • 浅沟槽隔离(STI),沟槽衬垫厚度增加
    • US07985656B1
    • 2011-07-26
    • US12607333
    • 2009-10-28
    • Sunil MehtaStewart LogieSteven Fong
    • Sunil MehtaStewart LogieSteven Fong
    • H01L21/76
    • H01L21/76224
    • A method of manufacturing an integrated circuit includes etching a substrate to create simultaneously a first trench between high voltage transistor regions of the substrate and a second trench between low voltage regions of the substrate. The substrate is then oxidized to form a silicon dioxide layer lining the first and second trenches, the layer having a first thickness. A silicon nitride layer is deposited on the silicon dioxide layer in the first and second trenches. The silicon nitride layer is then etched from the first trench but not from the second trench, thereby exposing the silicon layer in the first trench but not the second trench. The exposed silicon dioxide layer in the first trench is oxidized to increase the thickness of the silicon dioxide layer to a second thickness greater than the first thickness of the unexposed silicon dioxide layer in the second trench. The first and second trenches are then filled with a dielectric material.
    • 一种制造集成电路的方法包括蚀刻衬底以同时产生衬底的高电压晶体管区域和衬底的低电压区域之间的第二沟槽之间的第一沟槽。 然后将衬底氧化以形成衬在第一和第二沟槽上的二氧化硅层,该层具有第一厚度。 氮化硅层沉积在第一和第二沟槽中的二氧化硅层上。 然后从第一沟槽蚀刻氮化硅层,但不从第二沟槽蚀刻氮化硅层,从而暴露第一沟槽中的硅层而不是第二沟槽。 第一沟槽中暴露的二氧化硅层被氧化,以将二氧化硅层的厚度增加到大于第二沟槽中未曝光的二氧化硅层的第一厚度的第二厚度。 然后用介电材料填充第一和第二沟槽。
    • 3. 发明授权
    • Complementary avalanche injection EEPROM cell
    • 互补雪崩注入EEPROM单元
    • US06570212B1
    • 2003-05-27
    • US09578086
    • 2000-05-24
    • Sunil D. MehtaSteven FongStewart Logie
    • Sunil D. MehtaSteven FongStewart Logie
    • H01L27108
    • H01L27/11526G11C16/0441H01L21/28273H01L27/105H01L27/115H01L27/11521H01L27/11529H01L27/11558H01L29/66825
    • A non-volatile memory cell at least partially formed in a semiconductor substrate, comprising a first avalanche injection element having a first active region of a first conductivity type and a second active region of a second conductivity type, separated by a channel region of said second conductivity type; a second avalanche injection element having a third active region of said second conductivity type and sharing said second active region with said first avalanche injection element, the second avalanche injection element having a channel region of said first conductivity type; and a common floating gate at least partially overlying said first and second avalanche injection elements. In a further embodiment, the first avalanche element has an N+/P junction, the second avalanche element has a P+/N junction, and the floating gate capacitively coupled to the first and second avalanche elements.
    • 至少部分地形成在半导体衬底中的非易失性存储单元,包括具有第一导电类型的第一有源区和第二导电类型的第二有源区的第一雪崩注入元件,由所述第二导电类型的沟道区分隔开 导电型; 第二雪崩注入元件,具有所述第二导电类型的第三有源区,并且与所述第一雪崩注入元件共享所述第二有源区,所述第二雪崩注入元件具有所述第一导电类型的沟道区; 以及至少部分地覆盖所述第一和第二雪崩注入元件的公共浮动栅极。在另一实施例中,第一雪崩元件具有N + / P结,第二雪崩元件具有P + / N结,并且浮动栅极电容耦合 到第一和第二雪崩元件。
    • 7. 发明授权
    • Method and apparatus for monitoring leakage current of a faraday cup
    • 用于监测法拉第杯漏电流的方法和装置
    • US08040124B2
    • 2011-10-18
    • US12388456
    • 2009-02-18
    • Don BerrianSteven Fong
    • Don BerrianSteven Fong
    • G01R19/00
    • H01J37/3171G01R31/025H01J37/244H01J2237/022H01J2237/24405H01J2237/24507
    • A current branch circuit is electrically coupled with a Faraday cup and an operation amplifier separately. The Faraday cup, the current branch circuit and the operation amplifier are formed as a portion of an ion implanter. When the Faraday cup is electrically coupled with a ground through a conductive structure formed by an ion beam received by the Faraday cup, a current flows from the output of the operation amplifier to the current branch circuit to balance another current flow from the current branch circuit through the Faraday cup to the ground. By dynamically monitoring the voltage of the output of the operation amplifier, current flows through the Faraday cup to the ground and through the resistance of the conductive structure can be dynamically monitored. Accordingly, the difference between the ion current measured by the Faraday cup and the real ion current implanted to the wafer can be dynamically acquired to avoid overdosage of the wafer with the ion beam.
    • 电流分支电路分别与法拉第杯和运算放大器电耦合。 法拉第杯,当前的分支电路和运算放大器形成为离子注入机的一部分。 当法拉第杯通过由法拉第杯接收的离子束形成的导电结构与地面电耦合时,电流从运算放大器的输出流向电流分支电路,以平衡来自当前分支电路的另一电流 通过法拉第杯到地面。 通过动态监测运算放大器输出的电压,电流流经法拉第杯到达地面,通过导电结构的电阻可以动态监测。 因此,可以动态地获取由法拉第杯测量的离子电流与植入晶片的实际离子电流之间的差异,以避免晶片与离子束的过量剂量。