会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • WEIGHTED SEQUENTIAL VARIANCE ADAPTATION WITH PRIOR KNOWLEDGE FOR NOISE ROBUST SPEECH RECOGNITION
    • 用于噪声强调语音识别的先验知识的加权顺序变化适应
    • US20100169090A1
    • 2010-07-01
    • US12347504
    • 2008-12-31
    • Xiaodong CuiKaisheng Yao
    • Xiaodong CuiKaisheng Yao
    • G10L15/20
    • G10L15/20
    • A method for adapting acoustic models used for automatic speech recognition is provided. The method includes estimating noise in a portion of a speech signal, determining a first estimated variance scaling vector using an estimated 2-order polynomial and the noise estimation, wherein the estimated 2-order polynomial represents a priori knowledge of a dependency of a variance scaling vector on noise, determining a second estimated variance scaling vector using statistics from prior portions of the speech signal, determining a variance scaling factor using the first estimated variance scaling vector and the second estimated variance scaling vector, and using the variance scaling factor to adapt an acoustic model.
    • 提供了一种用于适应用于自动语音识别的声学模型的方法。 该方法包括估计语音信号的一部分中的噪声,使用估计的2阶多项式和噪声估计来确定第一估计方差缩放矢量,其中估计的2阶多项式表示方差缩放的依赖性的先验知识 使用来自语音信号的先前部分的统计确定第二估计方差缩放向量,使用第一估计方差缩放向量和第二估计方差缩放矢量确定方差缩放因子,并使用方差缩放因子来适应 声学模型。
    • 3. 发明授权
    • Weighted sequential variance adaptation with prior knowledge for noise robust speech recognition
    • 加权顺序方差适应与噪声鲁棒语音识别的先验知识
    • US08180635B2
    • 2012-05-15
    • US12347504
    • 2008-12-31
    • Xiaodong CuiKaisheng Yao
    • Xiaodong CuiKaisheng Yao
    • G10L15/20
    • G10L15/20
    • A method for adapting acoustic models used for automatic speech recognition is provided. The method includes estimating noise in a portion of a speech signal, determining a first estimated variance scaling vector using an estimated 2-order polynomial and the noise estimation. The estimated 2-order polynomial represents a prior knowledge of a dependency of a variance scaling vector on noise, determining a second estimated variance scaling vector using statistics from prior portions of the speech signal, determining a variance scaling factor using the first estimated variance scaling vector and the second estimated variance scaling vector, and using the variance scaling factor to adapt an acoustic model.
    • 提供了一种用于适应用于自动语音识别的声学模型的方法。 该方法包括估计语音信号的一部分中的噪声,使用估计的2阶多项式和噪声估计来确定第一估计方差缩放向量。 估计的2阶多项式表示方差缩放矢量对噪声的依赖性的先验知识,使用来自语音信号的先前部分的统计确定第二估计方差缩放矢量,使用第一估计方差缩放矢量确定方差缩放因子 和第二估计方差缩放向量,并使用方差缩放因子来适应声学模型。