会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Asymmetric magnets for magnetic resonance imaging
    • 用于磁共振成像的非对称磁体
    • US06700468B2
    • 2004-03-02
    • US10000995
    • 2001-11-30
    • Stuart CrozierDavid M. DoddrellHuawei Zhao
    • Stuart CrozierDavid M. DoddrellHuawei Zhao
    • G01V300
    • G01R33/3806G01R33/3808
    • Asymmetric, compact non-superconducting magnets for magnetic resonance imaging are provided. The magnets have a homogeneous region (the “dsv”) which can be located close to one end of the magnet so as to reduce the sensation of claustrophobia experienced by patients undergoing MRI procedures. The magnets can be designed using a hybrid process in which current density analysis is performed to obtain an initial coil configuration which is then refined using non-linear optimization techniques to obtain a final coil configuration. The hybrid method can incorporate various constraints, including, the location and size of the dsv, the uniformity and strength of the B0 field, stray field strengths outside of the non-superconducting magnet, and field strengths within the magnet's coils. The hybrid technique can also be used to design compact symmetric non-superconducting magnets.
    • 提供用于磁共振成像的不对称,紧凑的非超导磁体。 磁体具有均匀的区域(“dsv”),其可以位于靠近磁体的一端的位置,以便减少经历MRI程序的患者经历的幽闭恐惧症的感觉。 可以使用混合过程来设计磁体,其中进行电流密度分析以获得初始线圈配置,然后使用非线性优化技术来精炼以获得最终的线圈配置。 混合方法可以包括各种约束,包括dsv的位置和尺寸,B0场的均匀性和强度,非超导磁体外部的杂散场强以及磁体线圈内的场强。 混合技术也可用于设计紧凑型对称非超导磁体。
    • 2. 发明授权
    • Assymetric superconducting magnets for magnetic resonance imaging
    • 用于磁共振成像的非对称超导磁体
    • US6140900A
    • 2000-10-31
    • US421035
    • 1999-10-20
    • Stuart CrozierDavid M. DoddrellHuawei Zhao
    • Stuart CrozierDavid M. DoddrellHuawei Zhao
    • G01R33/38G01R33/3815G01V3/00H01F5/00
    • G01R33/3815G01R33/3806
    • Asymmetric, compact superconducting magnets for magnetic resonance imaging are provided. The magnets have a homogeneous region (the "dsv") which can be located close to one end of the magnet so as to reduce the sensation of claustrophobia experienced by patients undergoing MRI procedures. The magnets can be designed using a hybrid process in which current density analysis is performed to obtain an initial coil configuration which is then refined using non-linear optimization techniques to obtain a final coil configuration. The hybrid method can incorporate various constraints, including, the location and size of the dsv, the uniformity and strength of the B.sub.0 field, stray field strengths outside of the superconducting magnet, and field strengths within the magnet's coils. The hybrid technique can also be used to design compact symmetric superconducting magnets.
    • 提供用于磁共振成像的非对称紧凑型超导磁体。 磁体具有均匀的区域(“dsv”),其可以位于靠近磁体的一端的位置,以便减少经历MRI程序的患者经历的幽闭恐惧症的感觉。 可以使用混合过程来设计磁体,其中进行电流密度分析以获得初始线圈配置,然后使用非线性优化技术来精炼以获得最终的线圈配置。 混合方法可以包括各种约束,包括dsv的位置和尺寸,B0场的均匀性和强度,超导磁体外部的杂散场强以及磁体线圈内的场强。 混合技术也可用于设计紧凑的对称超导磁体。
    • 3. 再颁专利
    • Asymmetric superconducting magnets for magnetic resonance imaging
    • 用于磁共振成像的非对称超导磁体
    • USRE39460E1
    • 2007-01-09
    • US10283692
    • 2002-10-30
    • Stuart CrozierDavid M. DoddrellHuawei Zhao
    • Stuart CrozierDavid M. DoddrellHuawei Zhao
    • G01V3/00H01F5/00
    • G01R33/3815G01R33/3806
    • Asymmetric, compact superconducting magnets for magnetic resonance imaging are provided. The magnets have a homogeneous region (the “dsv”) which can be located close to one end of the magnet so as to reduce the sensation of claustrophobia experienced by patients undergoing MRI procedures. The magnets can be designed using a hybrid process in which current density analysis is performed to obtain an initial coil configuration which is then refined using non-linear optimization techniques to obtain a final coil configuration. The hybrid method can incorporate various constraints, including, the location and size of the dsv, the uniformity and strength of the B0 field, stray field strengths outside of the superconducting magnet, and field strengths within the magnet's coils. The hybrid technique can also be used to design compact symmetric superconducting magnets.
    • 提供用于磁共振成像的非对称紧凑型超导磁体。 磁体具有均匀的区域(“dsv”),其可以位于靠近磁体的一端的位置,以便减少经历MRI程序的患者经历的幽闭恐惧症的感觉。 可以使用混合过程来设计磁体,其中进行电流密度分析以获得初始线圈配置,然后使用非线性优化技术来精炼以获得最终的线圈配置。 混合方法可以包括各种约束,包括dsv的位置和大小,B O场的均匀性和强度,超导磁体外部的杂散场强,以及磁体的磁场强度 线圈 混合技术也可用于设计紧凑的对称超导磁体。
    • 4. 发明授权
    • Magnets for magnetic resonance systems
    • 磁共振系统磁铁
    • US5818319A
    • 1998-10-06
    • US576069
    • 1995-12-21
    • Stuart CrozierDavid M. Doddrell
    • Stuart CrozierDavid M. Doddrell
    • G01R33/38G01R33/3815G01R33/421G01V3/00H01F7/20
    • G01R33/3815G01R33/3806G01R33/421
    • Procedures for designing magnets, including superconducting magnets, shim magnets, and gradient magnets for magnetic resonance systems, are provided. The procedures involve the use of a simulated annealing procedure in which weighted spherical harmonics are included in the procedure's error function. The procedure has resulted in the development of previously unknown magnet designs. In particular, superconducting magnets have been designed which include at least one coil in which the current flow is opposite to that in adjoining coils. Such reversed flow in combination with a relatively large number of coils, e.g., more than 6 coils, have enabled the development of short, yet homogeneous, whole body magnets for use in magnetic resonance imaging (MRI).
    • 提供了用于设计磁体的方法,包括用于磁共振系统的超导磁体,垫片磁体和梯度磁体。 该程序涉及使用模拟退火程序,其中加权球面谐波包括在程序的误差函数中。 该程序导致了以前未知的磁体设计的发展。 特别地,已经设计了超导磁体,其包括至少一个线圈,其中电流与毗邻的线圈相反。 与相对大量的线圈(例如多于6个线圈)组合的这种反向流动使得能够开发用于磁共振成像(MRI)的短而均匀的全身磁体。
    • 6. 发明申请
    • MAGNETS FOR USE IN MAGNETIC RESONANCE IMAGING
    • 用于磁共振成像的磁铁
    • US20100079144A1
    • 2010-04-01
    • US12447070
    • 2007-10-26
    • Stuart CrozierHuawei ZhaoFeng Liu
    • Stuart CrozierHuawei ZhaoFeng Liu
    • G01R33/24
    • G01R33/3815G01R33/421
    • A magnetic resonance system uses a shielded superconducting magnet to produce a dsv useful for specialist imaging in an overall short magnet system at field strengths 1.5 Tesla and above. The magnet includes at least a first central coil C1, which has a length of at least 25% of the overall length of the magnet, and is used in concert with a series of symmetric primary coils, at least one set of which carry current in a direction opposite to that of the central coil. Force balancing is advantageously used in the design of the coils. The primary coils are shielded by at least one shielding coil, which carries current in a direction opposite to the majority of the primary coils. The magnet resonance system can be used for orthopedic imaging.
    • 磁共振系统使用屏蔽超导磁体产生一个dsv,用于整个短磁体系统中的专家成像,场强为1.5特斯拉及以上。 该磁体包括至少一个第一中心线圈C1,该中心线圈C1的长度至少为磁铁整体长度的25%,并与一系列对称的初级线圈一致使用,至少一组载体电流 与中心线圈相反的方向。 力平衡有利地用于线圈的设计中。 初级线圈由至少一个屏蔽线圈屏蔽,该屏蔽线圈沿与大部分初级线圈相反的方向承载电流。 磁共振系统可用于矫形成像。
    • 7. 发明授权
    • Magnets for use in magnetic resonance imaging
    • 用于磁共振成像的磁铁
    • US08421463B2
    • 2013-04-16
    • US12447070
    • 2007-10-26
    • Stuart CrozierHuawei ZhaoFeng Liu
    • Stuart CrozierHuawei ZhaoFeng Liu
    • G01V3/00
    • G01R33/3815G01R33/421
    • A magnetic resonance system uses a shielded superconducting magnet to produce a dsv useful for specialist imaging in an overall short magnet system at field strengths 1.5 Tesla and above. The magnet includes at least a first central coil C1, which has a length of at least 25% of the overall length of the magnet, and is used in concert with a series of symmetric primary coils, at least one set of which carry current in a direction opposite to that of the central coil. Force balancing is advantageously used in the design of the coils. The primary coils are shielded by at least one shielding coil, which carries current in a direction opposite to the majority of the primary coils. The magnet resonance system can be used for orthopedic imaging.
    • 磁共振系统使用屏蔽超导磁体产生一个dsv,用于整个短磁体系统中的专家成像,场强为1.5特斯拉及以上。 该磁体包括至少一个第一中心线圈C1,该中心线圈C1的长度至少为磁铁整体长度的25%,并与一系列对称的初级线圈一致使用,至少一组载体电流 与中心线圈相反的方向。 力平衡有利地用于线圈的设计中。 初级线圈由至少一个屏蔽线圈屏蔽,该屏蔽线圈沿与大部分初级线圈相反的方向承载电流。 磁共振系统可用于矫形成像。
    • 8. 发明授权
    • Coil decoupling
    • 线圈去耦
    • US08390287B2
    • 2013-03-05
    • US12593237
    • 2008-03-26
    • Stuart CrozierBing Keong LiEwald Weber
    • Stuart CrozierBing Keong LiEwald Weber
    • G01V3/00
    • G01R33/34046A61B5/055G01R33/34076G01R33/365G01R33/5611
    • A Magnetic Resonance Imaging (MRI) phased array head coil (10) comprises an array of coils (1, 2, 3, 4) a decoupling circuit (7) and a decoupling base (14). Counter wound inductors from adjoining coils (1, 2, 3, 4) in the decoupling circuit (7) are interlaced to achieve mutual decoupling between adjoining coils. Each separate coil (1, 2, 3, 4) includes a pair of spaced parallel main conductors (12) located on opposite sides of a cylindrical space (5) enclosed by the coils (1, 2, 3, 4). The decoupling base (14) comprises two meandering conductor bases (8, 9) which are interlaced. Orthogonal main conductors (12) of the coil (1, 2, 3, 4) share a common conductor base (8, 9). The multiple crossings of the paths of the conductor bases (8, 9) reduces mutual coupling effects.
    • 磁共振成像(MRI)相控阵列头线圈(10)包括线圈(1,2,3,4)阵列,去耦电路(7)和去耦基座(14)。 在去耦电路(7)中来自相邻线圈(1,2,3,4)的反绕绕电感器交织以实现相邻线圈之间的相互去耦。 每个分离的线圈(1,2,3,4)包括位于由线圈(1,2,3,4)包围的圆柱形空间(5)的相对侧上的一对隔开的平行主导体(12)。 去耦基座(14)包括两个交织的曲折导体基座(8,9)。 线圈(1,2,3,4)的正交主导体(12)共用公共导体基座(8,9)。 导体基座(8,9)的路径的多个交叉点减少了相互耦合效应。
    • 9. 发明授权
    • Coil array for magnetic resonance imaging
    • 用于磁共振成像的线圈阵列
    • US07446528B2
    • 2008-11-04
    • US10525932
    • 2003-08-29
    • David Michael DoddrellStuart CrozierKurt LuescherWolfgang Udo Roffman
    • David Michael DoddrellStuart CrozierKurt LuescherWolfgang Udo Roffman
    • G01V3/00A61B5/055
    • G01R33/34046
    • A radio frequency (RF) coil array is used in resonance imaging and/or analysis of a subject located within a cylindrical space in which a magnetic field is operatively applied in an axial direction (z). The coil array comprises a plurality of coil elements (10, 11, 12, 13) angled relative to each other about the axis of the cylindrical space, each coil element having a pair of main conductors extending generally parallel to the direction of the magnetic field and located on diametrically opposite sides of the cylindrical space, and a pair of connection conductors connected between respective ends of the main conductors. Each coil element has its maximum sensitivity near the centre of the cylindrical space, so that the subject under study is located in a region of maximum sensitivity.
    • 射频(RF)线圈阵列用于位于其中沿轴向方向(z)可操作地施加磁场的圆柱形空间内的被摄体的共振成像和/或分析。 线圈阵列包括围绕圆柱形空间的轴线相对于彼此成角度的多个线圈元件(10,11,12,13),每个线圈元件具有大致平行于磁场方向延伸的一对主导体 并且位于圆柱形空间的径向相对侧上,并且连接在主导体的各个端部之间的一对连接导体。 每个线圈元件在圆柱形空间的中心附近具有最大灵敏度,使得被研究对象位于最大灵敏度的区域。