会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 5. 发明授权
    • Computing an operating parameter of a unified power flow controller
    • 计算统一电力潮流控制器的运行参数
    • US08930034B1
    • 2015-01-06
    • US13159303
    • 2011-06-13
    • David G. WilsonRush D. Robinett, III
    • David G. WilsonRush D. Robinett, III
    • G06F19/00
    • G05F1/67G05B15/02H02J3/38H02J13/0079Y02E40/72Y04S10/12
    • A Unified Power Flow Controller described herein comprises a sensor that outputs at least one sensed condition, a processor that receives the at least one sensed condition, a memory that comprises control logic that is executable by the processor; and power electronics that comprise power storage, wherein the processor causes the power electronics to selectively cause the power storage to act as one of a power generator or a load based at least in part upon the at least one sensed condition output by the sensor and the control logic, and wherein at least one operating parameter of the power electronics is designed to facilitate maximal transmittal of electrical power generated at a variable power generation system to a grid system while meeting power constraints set forth by the electrical power grid.
    • 本文描述的统一功率流量控制器包括输出至少一个感测到的状态的传感器,接收所述至少一个感测到的状态的处理器,包括可由处理器执行的控制逻辑的存储器; 以及包括功率存储器的功率电子器件,其中所述处理器使所述电力电子设备选择性地使所述电力存储器至少部分地基于由所述传感器输出的所述至少一个感测状态而充当发电机或负载之一, 控制逻辑,并且其中所述功率电子器件的至少一个操作参数被设计为便于在满足由所述电力电网提出的功率约束的情况下在可变发电系统处产生的电力的最大传递到电网系统。
    • 6. 发明授权
    • Nonlinear power flow feedback control for improved stability and performance of airfoil sections
    • 非线性功率流反馈控制,用于提高翼型段的稳定性和性能
    • US08527247B1
    • 2013-09-03
    • US12633045
    • 2009-12-08
    • David G. WilsonRush D. Robinett, III
    • David G. WilsonRush D. Robinett, III
    • G06F17/50G06F7/60G06G7/48G06G7/50B63H3/00
    • G05B11/06G05B13/04
    • A computer-implemented method of determining the pitch stability of an airfoil system, comprising using a computer to numerically integrate a differential equation of motion that includes terms describing PID controller action. In one model, the differential equation characterizes the time-dependent response of the airfoil's pitch angle, α. The computer model calculates limit-cycles of the model, which represent the stability boundaries of the airfoil system. Once the stability boundary is known, feedback control can be implemented, by using, for example, a PID controller to control a feedback actuator. The method allows the PID controller gain constants, KI, Kp, and Kd, to be optimized. This permits operation closer to the stability boundaries, while preventing the physical apparatus from unintentionally crossing the stability boundaries. Operating closer to the stability boundaries permits greater power efficiencies to be extracted from the airfoil system.
    • 一种用于确定翼型系统的桨距稳定性的计算机实现的方法,包括使用计算机对包含描述PID控制器动作的项的微分运动方程进行数值积分。 在一个模型中,微分方程表征了翼型的俯仰角α的时间依赖响应。 计算机模型计算模型的极限循环,其代表翼型系统的稳定性边界。 一旦知道稳定边界,就可以通过使用例如PID控制器来控制反馈致动器来实现反馈控制。 该方法允许对PID控制器增益常数KI,Kp和Kd进行优化。 这允许操作更接近稳定性边界,同时防止物理设备无意地穿过稳定性边界。 靠近稳定边界的操作允许从翼型系统中提取更高的功率效率。
    • 7. 发明授权
    • Control system design method
    • 控制系统设计方法
    • US08121708B1
    • 2012-02-21
    • US12052180
    • 2008-03-20
    • David G. WilsonRush D. Robinett, III
    • David G. WilsonRush D. Robinett, III
    • G05B13/02
    • G05B11/06G05B13/04
    • A control system design method and concomitant control system comprising representing a physical apparatus to be controlled as a Hamiltonian system, determining elements of the Hamiltonian system representation which are power generators, power dissipators, and power storage devices, analyzing stability and performance of the Hamiltonian system based on the results of the determining step and determining necessary and sufficient conditions for stability of the Hamiltonian system, creating a stable control system based on the results of the analyzing step, and employing the resulting control system to control the physical apparatus.
    • 一种控制系统设计方法和伴随控制系统,其特征在于,包括表示要被控制为哈密顿系统的物理设备,确定作为发电机,功率耗散器和功率储存装置的哈密顿系统表示的元件,分析哈密顿系统的稳定性和性能 基于确定步骤的结果并确定哈密顿系统的稳定性的必要和充分条件,基于分析步骤的结果创建稳定的控制系统,并且使用所得到的控制系统来控制物理设备。