会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Enhancing biological knowledge discovery using multiples support vector machines
    • 使用多个支持向量机增强生物知识发现
    • US06760715B1
    • 2004-07-06
    • US09633616
    • 2000-08-07
    • Stephen BarnhillIsabelle GuyonJason Weston
    • Stephen BarnhillIsabelle GuyonJason Weston
    • G06F1518
    • G06K9/6256G06F19/20G06F19/24G06K9/6269G06N99/005
    • Multiple support vector machines are used to extract useful information from vast quantities of biological data. The method includes pre-processing of training data and test data to add dimensionality or to identify missing or erroneous data points. The training data is used to train the learning machine after which the success of the training is tested using the test data. The test output is pre-processed to determine whether the knowledge discovered from the pre-processed test data set is desirable and to identify which of the multiple support vector machines provides the optimal solution. After the training has been confirmed, live biological data can be pre-processed then input into the identified support vector machine that provides the optimal solution for extraction of useful information.
    • 多支持向量机用于从大量生物数据中提取有用的信息。 该方法包括预处理训练数据和测试数据以增加维度或识别丢失或错误的数据点。 训练数据用于训练学习机,之后使用测试数据测试训练的成功。 测试输出被预处理以确定从预处理的测试数据集中发现的知识是否是期望的,并且识别多个支持向量机中的哪一个提供最佳解决方案。 训练确定后,生物体数据可以预处理,然后输入到识别的支持向量机中,为提取有用信息提供最佳解决方案。
    • 5. 发明申请
    • Colon cancer biomarkers
    • 结肠癌生物标志物
    • US20050165556A1
    • 2005-07-28
    • US11033570
    • 2005-01-11
    • Stephen BarnhillJason WestonIsabelle Guyon
    • Stephen BarnhillJason WestonIsabelle Guyon
    • G06F15/18G06F19/00G06K9/62G06Q10/06G06Q20/10G06Q50/22G06T7/00G01N33/48G01N33/50
    • G06K9/623G06K9/6228G06K9/6231G06K9/6256G06K9/6269G06N20/00G06Q10/0637G06Q20/10G06Q40/06G06Q50/22G06T7/0012G16B25/00G16B40/00Y02A90/22Y02A90/24Y02A90/26
    • Systems and methods for enhancing knowledge discovery from data using multiple learning machines in general and multiple support vector machines in particular. Training data for a learning machine is pre-processed in order to add meaning thereto. Multiple support vector machines, each comprising distinct kernels, are trained with the pre-processed training data and are tested with test data that is pre-processed in the same manner. The test outputs from multiple support vector machines are compared in order to determine which of the test outputs if any represents a optimal solution. Selection of one or more kernels may be adjusted and one or more support vector machines may be retrained and retested. Optimal solutions based on distinct input data sets may be combined to form a new input data set to be input into one or more additional support vector machine. The methods, systems and devices of the present invention comprise use of Support Vector Machines for the identification of patterns that are important for medical diagnosis, prognosis and treatment. Such patterns may be found in many different datasets. The present invention also comprises methods and compositions for the treatment and diagnosis of medical conditions.
    • 特别是通过使用多学习机器的数据增强知识发现的系统和方法,特别是多个支持向量机。 学习机器的训练数据被预先处理,以便增加其意义。 每个包含不同内核的多个支持向量机用预处理的训练数据进行训练,并用以相同方式预处理的测试数据进行测试。 比较来自多个支持向量机的测试输出,以确定哪个测试输出(如果有的话)代表最优解。 可以调整一个或多个内核的选择,并且可以对一个或多个支持向量机进行再培训和再测试。 可以组合基于不同输入数据集的最佳解决方案以形成要输入到一个或多个附加支持向量机的新输入数据集。 本发明的方法,系统和装置包括使用支持向量机来识别对医学诊断,预后和治疗很重要的模式。 这种模式可以在许多不同的数据集中找到。 本发明还包括用于治疗和诊断医学病症的方法和组合物。
    • 9. 发明授权
    • Methods of identifying biological patterns using multiple data sets
    • 使用多个数据集识别生物模式的方法
    • US06882990B1
    • 2005-04-19
    • US09633410
    • 2000-08-07
    • Stephen BarnhillIsabelle GuyonJason Weston
    • Stephen BarnhillIsabelle GuyonJason Weston
    • G06F15/18G06F19/00G06K9/62G06Q10/06G06Q20/10G06Q50/22G06T7/00G06F1/00
    • G06K9/623G06F19/20G06F19/24G06K9/6228G06K9/6231G06K9/6256G06K9/6269G06N99/005G06Q10/0637G06Q20/10G06Q40/06G06Q50/22G06T7/0012Y02A90/22Y02A90/26
    • Systems and methods for enhancing knowledge discovery from data using multiple learning machines in general and multiple support vector machines in particular. Training data for a learning machine is pre-processed in order to add meaning thereto. Multiple support vector machines, each comprising distinct kernels, are trained with the pre-processed training data and are tested with test data that is pre-processed in the same manner. The test outputs from multiple support vector machines are compared in order to determine which of the test outputs if any represents a optimal solution. Selection of one or more kernels may be adjusted and one or more support vector machines may be retrained and retested. Optimal solutions based on distinct input data sets may be combined to form a new input data set to be input into one or more additional support vector machine. The methods, systems and devices of the present invention comprise use of Support Vector Machines for the identification of patterns that are important for medical diagnosis, prognosis and treatment. Such patterns may be found in many different datasets. The present invention also comprises methods and compositions for the treatment and diagnosis of medical conditions.
    • 特别是通过使用多学习机器的数据增强知识发现的系统和方法,特别是多个支持向量机。 学习机器的训练数据被预先处理,以便增加其意义。 每个包含不同内核的多个支持向量机用预处理的训练数据进行训练,并用以相同方式预处理的测试数据进行测试。 比较来自多个支持向量机的测试输出,以确定哪个测试输出(如果有的话)代表最优解。 可以调整一个或多个内核的选择,并且可以对一个或多个支持向量机进行再培训和再测试。 可以组合基于不同输入数据集的最佳解决方案以形成要输入到一个或多个附加支持向量机的新输入数据集。 本发明的方法,系统和装置包括使用支持向量机来识别对医学诊断,预后和治疗很重要的模式。 这种模式可以在许多不同的数据集中找到。 本发明还包括用于治疗和诊断医学病症的方法和组合物。