会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Evaluation of database hierarchical cubes by nesting rollup operators associated with multiple groupings
    • 通过嵌套与多个分组关联的汇总运算符来评估数据库分层立方体
    • US07035843B1
    • 2006-04-25
    • US10077828
    • 2002-02-15
    • Srikanth BellamkondaAbhinav GuptaAndrew Witkowski
    • Srikanth BellamkondaAbhinav GuptaAndrew Witkowski
    • G06F17/30
    • G06F17/30592G06F17/30489Y10S707/99933
    • Methods are provided for efficiently evaluating database queries including multiple rollup operators. With the computation of grouping identifiers to distinguish grouping levels of each rollup operator, evaluation of database queries that include concatenation of rollup operators includes nesting of the rollup operators and includes the grouping identifiers as sorting keys for subsequent processing. Furthermore, to optimize the query evaluation process, the order in which the rollup operators are computed can be determined based on cardinalities that estimate the number of records generated by each rollup operator, and parallel evaluation can be utilized by partitioning data records between rollup operator processing stages based on the grouping keys associated with the rollup operators that are not being processed at the next stage. If the query includes an algebraic aggregate function, the algebraic function is represented as distributive functions, which are propagated through the evaluation stages and used to compute the algebraic function at the final rollup stage.
    • 提供了有效评估数据库查询(包括多个汇总运算符)的方法。 通过计算分组标识符以区分每个汇总运算符的分组级别,包括汇总运算符的级联的数据库查询的评估包括汇总运算符的嵌套,并且将分组标识符包括为用于后续处理的排序键。 此外,为了优化查询评估过程,可以基于估计每个汇总运算符生成的记录数的基数来确定计算汇总运算符的顺序,并且可以通过在汇总运算符处理之间分割数据记录来利用并行评估 基于与在下一阶段未被处理的汇总运算符相关联的分组密钥的阶段。 如果查询包含代数聚合函数,则代数函数表示为分布函数,通过评估阶段传播,用于计算最终汇总阶段的代数函数。
    • 7. 发明授权
    • Method and system for enhancing scalability of analytic window functions
    • 提高分析窗函数可扩展性的方法和系统
    • US08650208B2
    • 2014-02-11
    • US12848018
    • 2010-07-30
    • Srikanth Bellamkonda
    • Srikanth Bellamkonda
    • G06F17/30
    • G06F17/30445G06F17/30489
    • An improved approach is described for handling parallelization of window functions, particularly window functions that do not contain partition keys or which has low cardinality for the partition keys. The approach is highly scalable and can be used to greatly improve query processing. A two stage evaluation approach is employed to parallelize the processing of window functions. In the first stage, which is highly parallel, the majority of the computation of window function is done by all available processes. In this way, the entire computing power of the database server is utilized. The second stage, which is serial but is likely to be very short, all processes involved in first stage synchronize and complete the window function evaluation.
    • 描述了一种改进的方法来处理窗口函数的并行化,特别是不包含分区键或分区键的基数较低的窗口函数。 该方法具有高度可扩展性,可用于大大改进查询处理。 采用两阶段评估方法并行处理窗函数。 在高度并行的第一阶段,窗口函数的大部分计算是由所有可用的进程完成的。 以这种方式,利用数据库服务器的整个计算能力。 第二阶段是串行但可能很短的,第一阶段涉及的所有过程同步并完成窗口功能评估。
    • 8. 发明申请
    • Efficient Evaluation of Hierarchical Cubes By Non-Blocking Rollups and Skipping Levels
    • 通过非阻塞汇总和跳过级别对分层立方体进行有效的评估
    • US20090083253A1
    • 2009-03-26
    • US11862158
    • 2007-09-26
    • Srikanth Bellamkonda
    • Srikanth Bellamkonda
    • G06F17/30
    • G06F17/30489G06F17/30592
    • Techniques are described herein for efficiently evaluating database queries that include hierarchical cube computations. During second and subsequent evaluation phases (if any), a database server does not re-determine groups (nor re-aggregate within such groups) that have already been determined in a previous evaluation phase. Instead, according to a technique described herein, whenever an evaluation phase subsequent to the first evaluation phase is performed, the database server immediately outputs or otherwise returns certain groups and aggregate results that were determined based on certain grouping column sets that were generated in the previous evaluation phase. The database server does not aggregate within these certain groups when performing aggregation in the current evaluation phase, thereby avoiding the duplication of work already performed during previous evaluation phases.
    • 这里描述了用于有效评估包括分层立方体计算的数据库查询的技术。 在第二个和后续的评估阶段(如果有的话)中,数据库服务器不会重新确定在以前的评估阶段已经确定的组(也不在这些组内重新聚合)。 相反,根据本文描述的技术,每当执行第一评估阶段之后的评估阶段时,数据库服务器立即输出或以其他方式返回某些组,并且基于在前一个中生成的某些分组列集确定的聚合结果 评估阶段。 在当前评估阶段执行聚合时,数据库服务器不会在这些特定组内聚合,从而避免在以前的评估阶段已经执行的工作重复。
    • 10. 发明授权
    • Technique for removing subquery in group by—having clauses using window functions
    • 使用窗口函数删除组旁路子句中的子查询的技术
    • US07945560B2
    • 2011-05-17
    • US12125783
    • 2008-05-22
    • Rafi AhmedSrikanth Bellamkonda
    • Rafi AhmedSrikanth Bellamkonda
    • G06F7/00G06F17/30
    • G06F17/30466
    • Methods for transforming a query to remove redundant subqueries in HAVING clauses are provided. The methods provided transform queries that contain subqueries in HAVING clauses with tables and join conditions and filter conditions equal to tables, join conditions and filter conditions in outer query to queries that eliminate the original subquery and retain the original outer query with a single inline view using window functions. Whether this transformation can be performed depends on which tables and join and filter conditions are in the outer query and the subquery. The transformation eliminates duplicative table accesses and join operations from queries.
    • 提供了在HAVING子句中转换查询以删除冗余子查询的方法。 所提供的方法将包含HAVING子句中的子查询的查询转换为表和连接条件以及等于外部查询中的表,连接条件和过滤条件的过滤条件,以消除原始子查询并使用单个内联视图保留原始外部查询 窗口功能。 是否可以执行此转换取决于外部查询和子查询中的哪些表和连接和过滤条件。 该转换消除了查询中的重复表访问和连接操作。