会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Dispersion-compensated optical fiber amplifier
    • 色散补偿光纤放大器
    • US06785043B2
    • 2004-08-31
    • US10236158
    • 2002-09-06
    • Seong-Taek HwangKwan-Woong SongSung-Tae KimYoung-Hoon JooSung-Jin Park
    • Seong-Taek HwangKwan-Woong SongSung-Tae KimYoung-Hoon JooSung-Jin Park
    • H01S300
    • H01S3/06754H01S3/0057H01S3/0064H01S3/06758H01S3/094003
    • Disclosed is a dispersion-compensated optical-fiber amplifier including a circulator for outputting an optical signal received at a first terminal to a second terminal, while outputting an optical signal received at the second terminal to a third terminal; a first amplifier for amplifying the optical signal from the second terminal and an optical signal reapplied thereto; a dispersion-compensating fiber for compensating for a dispersion occurring in the optical signal received from the first amplifier and an optical signal reapplied thereto; a second amplifier for amplifying the optical signal from the dispersion-compensating fiber and an optical signal reapplied thereto; a splitter installed on the dispersion-compensating fiber and adapted to output to the dispersion-compensating fiber, an optical signal applied thereto and an optical signal reapplied thereto, while outputting a pumping light applied to one end thereof and adapted to pump both the first and second amplifiers to the other end thereof without allowing the pumping light to pass through the dispersion-compensating fiber; and, a reflector for reflecting back an optical signal from the second amplifier, so that the reflected optical signal is reapplied to the second amplifier, the splitter, the first amplifier, and the circulator, in this order.
    • 公开了一种色散补偿光纤放大器,包括:循环器,用于将在第一端子处接收的光信号输出到第二端子,同时将在第二端子接收的光信号输出到第三端子; 用于放大来自第二端子的光信号的第一放大器和重新施加到其上的光信号; 用于补偿从第一放大器接收的光信号中出现的色散的色散补偿光纤和重新施加于其上的光信号; 用于放大来自色散补偿光纤的光信号的第二放大器和重新应用于其的光信号; 分散器,其安装在色散补偿光纤上并且适于输出到色散补偿光纤,施加到色散补偿光纤的光信号和重新施加到其上的光信号,同时输出施加到色散补偿光纤的一端的泵浦光,并且适于泵浦第一和 第二放大器到另一端,而不允许泵浦光通过色散补偿光纤; 以及用于反射来自第二放大器的光信号的反射器,使得反射的光信号按照该顺序重新施加到第二放大器,分路器,第一放大器和循环器。
    • 2. 发明授权
    • Dispersion-compensated erbium-doped fiber amplifier
    • 色散补偿掺铒光纤放大器
    • US06934078B2
    • 2005-08-23
    • US10299306
    • 2002-11-19
    • Seong-Taek HwangSung-Tae KimSung-Jin Park
    • Seong-Taek HwangSung-Tae KimSung-Jin Park
    • H01S3/10G02B6/00H01S3/067H01S3/16H04B10/12
    • H01S3/06754H01S3/06725H01S3/06758H01S3/1608
    • Disclosed is dispersion-compensated erbium-doped fiber amplifier. The disclosed fiber amplifier comprises a first fiber amplifying unit, a second fiber amplifying unit arranged downstream from the first fiber amplifying unit while being connected in series to the first fiber amplifying unit, an optical fiber connected in parallel between the first and second fiber amplifying units and adapted to re-use a residual light, remaining after an amplification operation of the first fiber amplifying unit, as a pumping light for the second fiber amplifying unit, a fiber reflector for reflecting an optical signal amplified in the second fiber amplifying unit, thereby causing the reflected optical signal to flow backward towards the second fiber amplifying unit, a circulator for guiding the amplified optical signal, reflected to flow backward by the fiber reflector and dispersion-compensated by a dispersion compensating fiber, to flow along a path different from that of the amplified optical signal applied to the circulator while preventing an amplified spontaneous emission (ASE) generated during an amplification operation of the second fiber amplifying unit from flowing backward towards the first fiber amplifying unit, and the dispersion compensating fiber is arranged between the circulator and the second fiber amplifying unit and adapted to compensate for dispersion of the amplified optical signal.
    • 公开了色散补偿掺铒光纤放大器。 所公开的光纤放大器包括第一光纤放大单元,第二光纤放大单元,布置在与第一光纤放大单元串联连接的同时与第一光纤放大单元串联连接的第二光纤放大单元,并联在第一和第二光纤放大单元之间的光纤 并且适于在第一光纤放大单元的放大操作之后残留的剩余光作为用于第二光纤放大单元的泵浦光,用于反射在第二光纤放大单元中放大的光信号的光纤反射器,从而 使反射的光信号向后朝向第二光纤放大单元流动,用于引导被光纤反射器向后反射并被色散补偿光纤进行色散补偿的放大的光信号的循环器沿着不同于该光纤的路径流动 的放大光信号,同时防止放大的自发 在第二光纤放大单元的放大操作期间产生的有利发射(ASE)向后朝向第一光纤放大单元流动,并且色散补偿光纤被布置在循环器和第二光纤放大单元之间,并且适于补偿 放大光信号。
    • 7. 发明授权
    • Micro-cavity discharge thruster (MCDT)
    • 微腔排气推进器(MCDT)
    • US08689537B1
    • 2014-04-08
    • US12589182
    • 2009-10-19
    • Rodney L. BurtonJames Gary EdenSung-Jin ParkDavid L. Carroll
    • Rodney L. BurtonJames Gary EdenSung-Jin ParkDavid L. Carroll
    • F03H1/00H05H1/02
    • H05H1/54
    • It is disclosed herein a breakthrough concept for in-space propulsion for future Air Force, NASA and commercial systems. The invention combines the fields of micro-electrical-mechanical (MEMs) devices, optical physics, and nonequilibrium plasmadynamics to reduce dramatically the size of electric thrusters by 1-2 orders of magnitude, which when coupled with electrodeless operation and high thruster efficiency, will enable scalable, low-cost, long-life distributable propulsion for control of microsats, nanosats, and space structures. The concept is scalable from power levels of 1 W to tens of kilowatts with thrust efficiency exceeding 60%. Ultimate specific impulse would be 500 seconds with helium, with lower values for heavier gases.
    • 这里披露了未来空军,NASA和商业系统的空间推进的突破性概念。 本发明结合了微机电(MEM)装置的领域,光学物理学和非平衡等离子体动力学,将电推进器的尺寸大大减小了1-2个数量级,当与无电极操作和高推进器效率相结合时,将会 实现可扩展,低成本,长寿命的可分配推进,用于控制微型,纳米级和空间结构。 该概念可从1 W的功率水平扩展到几十千瓦,推力效率超过60%。 氦气的最终冲量为500秒,较重的气体值为较低值。
    • 8. 发明授权
    • Microchannel laser having microplasma gain media
    • 具有微质增益介质的微通道激光器
    • US08442091B2
    • 2013-05-14
    • US12682977
    • 2008-10-27
    • Sung-Jin ParkJ. Gary EdenPaoyei ChenPaul A. TchertchianThomas M. Spinka
    • Sung-Jin ParkJ. Gary EdenPaoyei ChenPaul A. TchertchianThomas M. Spinka
    • H01S3/091
    • H01S3/05H01S3/03H01S3/063H01S3/09H01S3/0971
    • The invention provides microchannel lasers having a microplasma gain medium. Lasers of the invention can be formed in semiconductor materials, and can also be formed in polymer materials. In a microlaser of the invention, high density plasmas are produced in microchannels. The microplasma acts as a gain medium with the electrodes sustaining the plasma in the microchannel. Reflectors are used with the microchannel for obtaining optical feedback to obtain lasing in the microplasma gain medium in devices of the invention for a wide range of atomic and molecular species. Several atomic and molecular gain media will produce sufficiently high gain coefficients that reflectors (mirrors) are not necessary. Microlasers of the invention are based on microplasma generation in channels of various geometries. Preferred embodiment microlaser designs can be fabricated in semiconductor materials, such as Si wafers, by standard photolithographic techniques, or in polymers by replica molding.
    • 本发明提供了具有微质增益介质的微通道激光器。 本发明的激光器可以形成在半导体材料中,也可以形成在聚合物材料中。 在本发明的微型激光器中,在微通道中产生高密度等离子体。 微量体作为增益介质,其中电极在微通道中维持等离子体。 反射器与微通道一起使用以获得光学反馈,以在广泛的原子和分子物种的本发明装置中的微量级增益介质中获得激光。 几个原子和分子增益介质将产生足够高的增益系数,反射器(反射镜)不是必需的。 本发明的微型扫描器基于各种几何形状的通道中的微量生成。 优选实施例微激光器设计可以通过标准光刻技术在半导体材料(例如Si晶片)中或通过复制成型制成聚合物。
    • 9. 发明授权
    • Electrophoretic display device and method of fabricating the same
    • 电泳显示装置及其制造方法
    • US08440486B2
    • 2013-05-14
    • US13271880
    • 2011-10-12
    • Sung-Jin Park
    • Sung-Jin Park
    • H01L21/00
    • G02F1/167G02F1/136213
    • A method of fabricating an electrophoretic display device includes forming a gate line along a direction, a gate electrode extending from the gate line, a common line parallel to the gate line, and a first storage electrode extending from the common line on a substrate, forming a gate insulating layer on an entire surface of the substrate including the gate line, the gate electrode, the common line and the first storage electrode, forming a semiconductor layer, a data line, and source and drain electrodes through a mask process, wherein the semiconductor layer is disposed over the gate electrode, the data line crosses the gate line to define a pixel region, the source electrode extends from the data line, and the drain electrode is spaced apart from the source electrode over the semiconductor layer.
    • 一种制造电泳显示装置的方法包括沿着一个方向形成栅极线,从栅极线延伸的栅电极,与栅极线平行的公共线,以及从衬底上的公共线延伸的第一存储电极,形成 在包括栅极线,栅电极,公共线和第一存储电极的基板的整个表面上的栅极绝缘层,通过掩模工艺形成半导体层,数据线以及源极和漏极,其中, 半导体层设置在栅极上方,数据线与栅极线交叉以限定像素区域,源电极从数据线延伸,并且漏电极与半导体层上的源电极间隔开。
    • 10. 发明授权
    • Method of making arrays of thin sheet microdischarge devices
    • 制备薄片微放电器件阵列的方法
    • US08221179B2
    • 2012-07-17
    • US11981412
    • 2007-10-31
    • J. Gary EdenSung-Jin ParkClark J. Wagner
    • J. Gary EdenSung-Jin ParkClark J. Wagner
    • H01J17/49
    • H01J17/49H01J1/025H01J9/00H01J9/02H01J25/50H01J61/09H01J61/305H01J61/62H01J63/04H01J65/046
    • The cavity 102 defines an empty volume formed in the insulator 108 has its walls defined by the insulator 108 and may extend through either (or both) the first electrode 106 or the second electrode 104, in which case the first electrode and/or second electrode also define the walls of the cavity 102. The cavity 102 is preferably cylindrical and has a diameter of 0.1 μm-1 mm. More preferably, the diameter ranges from 0.1 μm-500 μm, 1 μm-100 μm, or 100 μm-500 μm. The cavity 102 will be filled with a gas that contacts the cavity walls, fills the entire cavity 102 and is selected for its breakdown voltage or light emission properties at breakdown. Light is produced when the voltage difference between the first electrode 106 and the second electrode 104 creates an electric field sufficiently large to electrically break down the gas (nominally about 104 V-cm). This light escapes from the microcavity 102 through at least one end of the cavity 102.
    • 空腔102限定在绝缘体108中形成的空的体积具有由绝缘体108限定的壁,并且可延伸穿过第一电极106或第二电极104(或两者)中的一个或两者,在这种情况下,第一电极和/或第二电极 还限定空腔102的壁。空腔102优选是圆柱形的并且具有0.1μm-1mm的直径。 更优选的是,直径为0.1μm〜500μm,1μm〜100μm或100μm〜500μm。 空腔102将填充有与空腔壁接触的气体,填充整个空腔102,并且在击穿时选择其击穿电压或发光特性。 当第一电极106和第二电极104之间的电压差产生足够大的电场以电气分解气体(标称约为104V-cm)时产生光。 该光通过空腔102的至少一端从微腔102逸出。