会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Method and apparatus for intra-body ultrasound communication
    • 体内超声波通信的方法和装置
    • US08290598B2
    • 2012-10-16
    • US12703427
    • 2010-02-10
    • Scot C. BoonKeith R. MaileWilliam J. LinderPaul HuelskampRamprasad Vijayagopal
    • Scot C. BoonKeith R. MaileWilliam J. LinderPaul HuelskampRamprasad Vijayagopal
    • A61N1/36
    • A61N1/37217A61N1/3727H04B11/00H04B13/005
    • An intra-body ultrasonic signal can be converted into a first electrical signal, a local oscillator signal can be generated in an implantable system. The first electrical signal and the local oscillator signal can be mixed in an implantable system, such as to generate a demodulated signal, processed, such as using a filter. The filtered, demodulated signal can be further processed, such as implantably determining a peak amplitude of the first portion of the demodulated signal received from the filter over a time interval, implantably generating a dynamic tracking threshold that starts at an amplitude proportional the first portion of the demodulated signal and exponentially decays over a time interval, and determining a noise floor in the absence of a received intra-body ultrasonic signal and implantably comparing the peak amplitude and the tracking threshold and generate the digital output based on the difference.
    • 体内超声波信号可以转换成第一电信号,在可植入系统中可以产生本地振荡器信号。 第一电信号和本地振荡器信号可以在可植入系统中混合,例如产生经处理的解调信号,例如使用滤波器。 滤波后的解调信号可被进一步处理,诸如可植入地确定在时间间隔上从滤波器接收的解调信号的第一部分的峰值幅度,可植入地产生动态跟踪阈值,该动态跟踪阈值以与第 所述解调信号在时间间隔上指数衰减,以及在没有接收到的体内超声波信号的情况下确定噪声基底,并且可植入地比较所述峰值幅度和跟踪阈值,并且基于所述差异生成所述数字输出。
    • 2. 发明申请
    • METHOD AND APPARATUS FOR INTRA-BODY ULTRASOUND COMMUNICATION
    • 用于体内超声波通信的方法和装置
    • US20100204758A1
    • 2010-08-12
    • US12703427
    • 2010-02-10
    • Scot C. BoonKeith R. MaileWilliam J. LinderPaul HuelskampRamprasad Vijayagopal
    • Scot C. BoonKeith R. MaileWilliam J. LinderPaul HuelskampRamprasad Vijayagopal
    • A61N1/08
    • A61N1/37217A61N1/3727H04B11/00H04B13/005
    • An intra-body ultrasonic signal can be converted into a first electrical signal, a local oscillator signal can be generated in an implantable system. The first electrical signal and the local oscillator signal can be mixed in an implantable system, such as to generate a demodulated signal, processed, such as using a filter. The filtered, demodulated signal can be further processed, such as implantably determining a peak amplitude of the first portion of the demodulated signal received from the filter over a time interval, implantably generating a dynamic tracking threshold that starts at an amplitude proportional the first portion of the demodulated signal and exponentially decays over a time interval, and determining a noise floor in the absence of a received intra-body ultrasonic signal and implantably comparing the peak amplitude and the tracking threshold and generate the digital output based on the difference.
    • 体内超声波信号可以转换成第一电信号,在可植入系统中可以产生本地振荡器信号。 第一电信号和本地振荡器信号可以在可植入系统中混合,例如产生经处理的解调信号,例如使用滤波器。 滤波后的解调信号可被进一步处理,诸如可植入地确定在时间间隔上从滤波器接收的解调信号的第一部分的峰值幅度,可植入地产生动态跟踪阈值,该动态跟踪阈值以与第 所述解调信号在时间间隔上指数衰减,以及在没有接收到的体内超声波信号的情况下确定噪声基底,并且可植入地比较所述峰值幅度和跟踪阈值,并且基于所述差异生成所述数字输出。
    • 4. 发明授权
    • Low-power system and methods for neuromodulation
    • 低功率系统和神经调节方法
    • US08792992B2
    • 2014-07-29
    • US13274448
    • 2011-10-17
    • William J. LinderKeith R. MaileRamprasad VijayagopalRon A. Balczewski
    • William J. LinderKeith R. MaileRamprasad VijayagopalRon A. Balczewski
    • A61N1/00
    • A61N1/36157
    • An apparatus comprises an electrostimulation energy storage capacitor, a circuit path communicatively coupled to the electrostimulation energy storage capacitor and configured to provide quasi-constant current neural stimulation through a load from the electrostimulation energy storage capacitor, a current measuring circuit communicatively coupled to the circuit path and configured to obtain a measure of quasi-constant current delivered to the load, and a control circuit communicatively coupled to the current measuring circuit, wherein the control circuit is configured to initiate adjustment of the voltage level of the storage capacitor for a subsequent delivery of quasi-constant current according to a comparison of the measured load current to a specified load current value.
    • 一种装置包括电刺激能量存储电容器,电路通路连接到所述电刺激能量存储电容器,并且被配置为通过来自所述电刺激能量存储电容器的负载来提供准恒定电流神经刺激;电流测量电路,其通信地耦合到所述电路路径 并且被配置为获得传递到负载的准恒定电流的量度,以及通信地耦合到电流测量电路的控制电路,其中控制电路被配置为开始调整存储电容器的电压电平,以便随后传送 根据测量的负载电流与指定的负载电流值的比较,准恒定电流。
    • 6. 发明授权
    • Implantable defibrillation output circuit
    • 可植入除颤输出电路
    • US08428713B2
    • 2013-04-23
    • US13041970
    • 2011-03-07
    • Keith R. MaileWilliam J. Linder
    • Keith R. MaileWilliam J. Linder
    • A61N1/39
    • A61N1/3956A61N1/3912
    • An implantable defibrillation circuit can include an output circuit. The output circuit can include a first switch configured to controllably connect a first supply node to a first output node, a second switch configured to controllably connect a second supply node to the first output node through a first rectifier, and the second switch can be configured to inhibit the first switch from connecting the first supply node to the first output node when the second supply node is connected to the first output node through the second switch. In an example, the first and second switches can include insulated gate bipolar transistors.
    • 可植入除颤电路可以包括输出电路。 输出电路可以包括被配置为将第一供应节点可控地连接到第一输出节点的第一开关,被配置为通过第一整流器可控地将第二供电节点连接到第一输出节点的第二开关,并且第二开关可被配置 当所述第二供应节点通过所述第二开关连接到所述第一输出节点时,禁止所述第一开关连接所述第一供应节点与所述第一输出节点。 在一个示例中,第一和第二开关可以包括绝缘栅双极晶体管。
    • 7. 发明授权
    • Method and apparatus for radiation effects detection
    • 辐射效应检测方法和装置
    • US08053740B2
    • 2011-11-08
    • US13044003
    • 2011-03-09
    • Jeffrey E. StahmannWilliam J. LinderScott R. StubbsKeith R. Maile
    • Jeffrey E. StahmannWilliam J. LinderScott R. StubbsKeith R. Maile
    • G01T1/00
    • A61N1/37A61N1/3718
    • An implantable medical apparatus comprises a solid state electronic circuit, an ionizing radiation exposure sensor, an ionizing radiation dose rate sensor, and a controller circuit. The ionizing radiation exposure sensor is configured to detect an exposure of the solid state electronic circuit to ionizing radiation, and generate an indication of a non-single-event-upset (non-SEU) effect to the solid state electronic circuit from the exposure to ionizing radiation, wherein the sensor comprises an accumulated ionizing radiation exposure sensor. The controller circuit is configured to blank the indication from the accumulated ionizing radiation exposure sensor when the radiation dose rate sensor indicates that flux ionizing radiation exceeds a flux ionizing radiation threshold.
    • 一种可植入医疗装置,包括固态电子电路,电离辐射曝光传感器,电离辐射剂量率传感器和控制器电路。 电离辐射曝光传感器被配置为检测固态电子电路对电离辐射的曝光,并且产生对固态电子电路的非单事件不适(非SEU)效应的指示,从曝光到 电离辐射,其中所述传感器包括累积的电离辐射曝光传感器。 控制器电路被配置为当辐射剂量率传感器指示通量电离辐射超过通量电离辐射阈值时,从累积的电离辐射曝光传感器中消除指示。
    • 8. 发明授权
    • Cardiac rhythm management system with painless defibrillation lead impedance measurement
    • 心脏节律管理系统具有无痛除颤引线阻抗测量
    • US06597950B2
    • 2003-07-22
    • US09776306
    • 2001-02-02
    • William J. LinderKeith R. Maile
    • William J. LinderKeith R. Maile
    • A61N139
    • A61N1/3925
    • A cardiac rhythm management system includes a defibrillation lead impedance measurement system by which defibrillation lead impedance is measured using a test current source different from the defibrillation output supply. A resulting voltage is measured to determine the defibrillation lead impedance. Using low amplitude test currents (e.g., 10-20 milliamperes) avoids patient discomfort. Charge-balanced test currents avoids charge build-up that may interfere with sensing and avoids electrode degeneration. Different current amplitudes and resulting measured voltages provide a differential defibrillation lead impedance measurement for canceling undesired effects. Bidirectional test currents account for polarity effects on the defibrillation lead impedance measurement. A calibration/correction technique uses measurements of known resistances to correct a measurement of an unknown defibrillation lead impedance measurement.
    • 心律管理系统包括除颤引线阻抗测量系统,通过该除颤引线阻抗测量系统使用不同于除颤输出电源的测试电流源来测量除颤引线阻抗。 测量得到的电压以确定除颤引线阻抗。 使用低振幅测试电流(例如10-20毫安)避免患者不适。 电荷平衡测试电流避免电荷积聚,可能会干扰感测并避免电极退化。 不同的电流幅度和所得到的测量电压提供差分除颤引线阻抗测量,以消除不良影响。 双向测试电流对除颤引线阻抗测量的极性影响。 校准/校正技术使用已知电阻的测量来校正未知除颤导线阻抗测量的测量。
    • 9. 发明授权
    • Cardiac rhythm management system with painless defribillation lead impedance measurement
    • 心脏节律管理系统采用无痛除颤线阻抗测量
    • US06317628B1
    • 2001-11-13
    • US09236911
    • 1999-01-25
    • William J. LinderKeith R. Maile
    • William J. LinderKeith R. Maile
    • A61N139
    • A61N1/3925
    • A cardiac rhythm management system includes a defibrillation lead impedance measurement system by which defibrillation lead impedance is measured using a test current source different from the defibrillation output supply. A resulting voltage is measured to determine the defibrillation lead impedance. Using low amplitude test currents (e.g., 10-20 milliamperes) avoids patient discomfort. Charge-balanced test currents avoids charge build-up that may interfere with sensing and avoids electrode degeneration. Different current amplitudes and resulting measured voltages provide a differential defibrillation lead impedance measurement for canceling undesired effects. Bidirectional test currents account for polarity effects on the defibrillation lead impedance measurement. A calibration/correction technique uses measurements of known resistances to correct a measurement of an unknown defibrillation lead impedance measurement.
    • 心律管理系统包括除颤引线阻抗测量系统,通过该除颤引线阻抗测量系统使用不同于除颤输出电源的测试电流源来测量除颤引线阻抗。 测量得到的电压以确定除颤引线阻抗。 使用低振幅测试电流(例如10-20毫安)避免患者不适。 电荷平衡测试电流避免电荷积聚,可能会干扰感测并避免电极退化。 不同的电流幅度和所得到的测量电压提供差分除颤引线阻抗测量,以消除不良影响。 双向测试电流对除颤引线阻抗测量的极性影响。 校准/校正技术使用已知电阻的测量来校正未知除颤导线阻抗测量的测量。