会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Database aggregation query result estimator
    • 数据库聚合查询结果估计器
    • US07191181B2
    • 2007-03-13
    • US10873569
    • 2004-06-22
    • Sarajit ChaudhuriVivek R. NarasayyaRajeev MotwaniMayur D. Datar
    • Sarajit ChaudhuriVivek R. NarasayyaRajeev MotwaniMayur D. Datar
    • G06F17/30
    • G06F17/30489G06F17/30536G06F2216/03Y10S707/957Y10S707/99932Y10S707/99933Y10S707/99935Y10S707/99942Y10S707/99943
    • Aggregation queries are performed by first identifying outlier values, aggregating the outlier values, and sampling the remaining data after pruning the outlier values. The sampled data is extrapolated and added to the aggregated outlier values to provide an estimate for each aggregation query. Outlier values are identified by selecting values outside of a selected sliding window of data having the lowest variance. An index is created for the outlier values. The outlier data is removed from the window of data, and separately aggregated. The remaining data without the outliers is then sampled in one of many known ways to provide a statistically relevant sample that is then aggregated and extrapolated to provide an estimate for the remaining data. This sampled estimate is combined with the outlier aggregate to form an estimate for the entire set of data. Further methods involve the use of weighted sampling and weighted selection of outlier values for low selectivity queries, or queries having group by.
    • 通过首先识别异常值,聚合异常值和在修剪异常值之后对剩余数据进行采样来执行聚合查询。 采样数据被外推并加到聚合异常值中,以提供每个聚合查询的估计。 异常值通过选择具有最小方差的数据的所选滑动窗口之外的值来识别。 为异常值创建索引。 离群数据从数据窗口中移除,并单独汇总。 然后以许多已知方式之一对剩余的没有异常值的数据进行采样,以提供统计学相关的样本,然后进行聚合和外推,以提供剩余数据的估计。 该采样估计与异常值聚合组合以形成整套数据的估计。 进一步的方法涉及对低选择性查询或具有分组查询的异常值的加权采样和加权选择。
    • 6. 发明授权
    • Sampling for queries
    • 查询抽样
    • US07287020B2
    • 2007-10-23
    • US09759804
    • 2001-01-12
    • Surajit ChaudhuriVivek R. NarasayyaRajeev MotwaniMayur D. Datar
    • Surajit ChaudhuriVivek R. NarasayyaRajeev MotwaniMayur D. Datar
    • G06F17/30
    • G06F17/30536G06F17/30489Y10S707/99931Y10S707/99932Y10S707/99933Y10S707/99942
    • This disclosure describes leveraging workload information associated with executed database queries for estimating the result of a current database query. The workload information is analyzed to determine the usage of tuples in a database during query execution, such as how often a tuple is accessed and the number of different queries that accessed the tuple. A tuple is assigned a weight value that is based on the analyzed workload information. The particular tuples sampled for estimating a result for the current query is based on each tuple's weight value. The workload information may also be leveraged to generate an outlier index that identifies outlier tuples associated with the executed queries or that identifies outlier tuples associated with particular queries that are executed more frequently than other queries. The result for the current query can also be estimated using the sampled values along with the outlier tuples from the outlier index.
    • 本公开描述了利用与执行的数据库查询相关联的工作负载信息来估计当前数据库查询的结果。 分析工作负载信息以确定查询执行期间数据库中元组的使用情况,例如访问元组的频率以及访问元组的不同查询的数量。 一个元组被分配一个基于分析的工作量信息的权重值。 为当前查询估计结果而采样的特定元组基于每个元组的权重值。 还可以利用工作负载信息来生成异常值索引,该索引识别与执行的查询相关联的异常值元组,或者识别与其他查询更频繁执行的特定查询相关联的异常值元组。 当前查询的结果也可以使用采样值以及来自离群值索引的异常值元组来估计。
    • 7. 发明授权
    • Sampling for aggregation queries
    • 聚合查询的抽样
    • US06842753B2
    • 2005-01-11
    • US09759799
    • 2001-01-12
    • Surajit ChaudhuriVivek R. NarasayyaRajeev MotwaniMayur D. Datar
    • Surajit ChaudhuriVivek R. NarasayyaRajeev MotwaniMayur D. Datar
    • G06F17/30
    • G06F17/30489G06F17/30536G06F2216/03Y10S707/957Y10S707/99932Y10S707/99933Y10S707/99935Y10S707/99942Y10S707/99943
    • Aggregation queries are performed by first identifying outlier values, aggregating the outlier values, and sampling the remaining data after pruning the outlier values. The sampled data is extrapolated and added to the aggregated outlier values to provide an estimate for each aggregation query. Outlier values are identified by selecting values outside of a selected sliding window of data having the lowest variance. An index is created for the outlier values. The outlier data is removed from the window of data, and separately aggregated. The remaining data without the outliers is then sampled in one of many known ways to provide a statistically relevant sample that is then aggregated and extrapolated to provide an estimate for the remaining data. This sampled estimate is combined with the outlier aggregate to form an estimate for the entire set of data. Further methods involve the use of weighted sampling and weighted selection of outlier values for low selectivity queries, or queries having group by.
    • 通过首先识别异常值,聚合异常值和在修剪异常值之后对剩余数据进行采样来执行聚合查询。 采样数据被外推并加到聚合异常值中,以提供每个聚合查询的估计。 异常值通过选择具有最小方差的数据的所选滑动窗口之外的值来识别。 为异常值创建索引。 离群数据从数据窗口中移除,并单独汇总。 然后以许多已知方式之一对剩余的没有异常值的数据进行采样,以提供统计学相关的样本,然后进行聚合和外推,以提供剩余数据的估计。 该采样估计与异常值聚合组合以形成整套数据的估计。 进一步的方法涉及对低选择性查询或具有分组查询的异常值的加权采样和加权选择。
    • 8. 发明授权
    • Framework for testing query transformation rules
    • 查询转换规则的框架
    • US08630998B2
    • 2014-01-14
    • US12789486
    • 2010-05-28
    • Vivek R. NarasayyaRavishankar RamamurthyHicham G. Elmongui
    • Vivek R. NarasayyaRavishankar RamamurthyHicham G. Elmongui
    • G06F7/00
    • G06F17/30448G06F11/3664G06F11/3676
    • Described is a test framework for testing transformation rules of query optimizers. Rule patterns obtained as tree structures from a query optimizer are used to generate queries that are used to test the rule optimizer's transformation rules. The test framework tracks which rules are exercised for each query, and also determines the correctness of the transformation rule by comparing the results of the query processing with the rule and without the rule (by turning off the rule). The test framework creates a composite pattern corresponding to two or more rules, such as to test rules in a set (e.g., as pairs). Also described is the efficient execution of a test suite for correctness testing, in which queries of the test suite are selected based upon cost information.
    • 描述了用于测试查询优化器的转换规则的测试框架。 使用从查询优化器获取的树结构的规则模式用于生成用于测试规则优化器转换规则的查询。 测试框架跟踪每个查询执行哪些规则,并且通过将查询处理的结果与规则进行比较,并且通过将规则(通过关闭规则)进行比较来确定变换规则的正确性。 测试框架创建一个对应于两个或多个规则的复合模式,例如测试集合中的规则(例如,成对)。 还描述了用于正确性测试的测试套件的有效执行,其中基于成本信息来选择测试套件的查询。
    • 10. 发明申请
    • APPLICATION AND DATABASE CONTEXT FOR DATABASE APPLICATION DEVELOPERS
    • 数据库应用开发者的应用和数据库背景
    • US20090106746A1
    • 2009-04-23
    • US11875616
    • 2007-10-19
    • Surajit ChaudhuriVivek R. NarasayyaManoj A. Symala
    • Surajit ChaudhuriVivek R. NarasayyaManoj A. Symala
    • G06F9/45
    • G06F17/30306G06F8/20G06F11/3476G06F11/366G06F17/3041G06F2201/86
    • Infrastructure for capturing and correlating application context and database context for tuning, profiling and debugging tasks. The infrastructure extends the DBMS and application profiling infrastructure making it easy for a developer to invoke and interact with a tool from inside the development environment. Three sources of information are employed when an application is executed: server tracing, data access layer tracing, and application tracing. The events obtained from each of these sources are written into a log file. An event log is generated on each machine that involves either an application process or the DBMS server process and the log file receives log traces from different processes on a machine to the same trace session. A post-processing step over the event log(s) correlates the application and database contexts. The output is a single view where both the application and database profile of each statement issued by the application are exposed.
    • 用于捕获和关联应用程序上下文和数据库上下文以进行调整,分析和调试任务的基础结构。 该基础架构扩展了DBMS和应用程序分析基础架构,使开发人员可以轻松地从开发环境内调用和交互工具。 执行应用程序时,将采用三种信息来源:服务器跟踪,数据访问层跟踪和应用程序跟踪。 从这些源中获取的事件将被写入日志文件。 在涉及应用程序进程或DBMS服务器进程的每台计算机上生成事件日志,并且日志文件从机器上的不同进程接收到相同跟踪会话的日志跟踪。 在事件日志之后的后处理步骤将应用程序和数据库上下文相关联。 输出是单个视图,其中应用程序和应用程序发出的每个语句的数据库配置文件都将公开。