会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • SYSTEMS AND METHODS FOR AUTOMATED DIAGNOSIS AND DECISION SUPPORT FOR HEART RELATED DISEASES AND CONDITIONS
    • 自动诊断和心理支持的系统与方法相关疾病和病症
    • WO2005081168A3
    • 2005-12-01
    • PCT/US2004040757
    • 2004-12-06
    • SIEMENS MEDICAL SOLUTIONSSIEMENS CORP RES INCKRISHNAN SRIRAMGUPTA ALOKRAO R BHARATCOMANICIU DORINZHOU XIANG SEAN
    • KRISHNAN SRIRAMGUPTA ALOKRAO R BHARATCOMANICIU DORINZHOU XIANG SEAN
    • A61B5/05G06F17/00G06F19/00
    • G16H50/20
    • CAD (computer-aided diagnosis) systems and applications for cardiac imaging are provided, which implement methods to automatically extract and analyze features from a collection of patient information (including image data and/or non-image data) of a subject patient, to provide decision support for various aspects of physician workflow including, for example, automated assessment of regional myocardial function through wall motion analysis, automated diagnosis of heart diseases and conditions such as cardiomyopathy, coronary artery disease and other heart-related medical conditions, and other automated decision support functions. The CAD systems implement machine-learning techniques that use a set of training data obtained (learned) from a database of labeled patient cases in one or more relevant clinical domains and/or expert interpretations of such data to enable the CAD systems to "learn" to analyze patient data and make proper diagnostic assessments and decisions for assisting physician workflow.
    • 提供了用于心脏成像的CAD(计算机辅助诊断)系统和应用,其实现了从受试患者的患者信息(包括图像数据和/或非图像数据)的集合中自动提取和分析特征的方法,以提供 对医师工作流程的各个方面的决策支持,包括例如通过壁运动分析自动评估区域心肌功能,心脏疾病的自动诊断和诸如心肌病,冠状动脉疾病和其他与心脏相关的医疗状况等条件,以及其他自动化决策 支持功能。 CAD系统实施机器学习技术,其使用从一个或多个相关临床领域的标记的患者病例的数据库获得(学习)的一组训练数据和/或对这些数据的专家解释,使得CAD系统能够“学习” 分析患者数据,进行适当的诊断评估和决策,以协助医师的工作流程。
    • 3. 发明申请
    • SYSTEM AND METHOD FOR LOCAL DEFORMABLE MOTION ANALYSIS
    • 用于局部可变形运动分析的系统和方法
    • WO2005034039A3
    • 2005-07-21
    • PCT/US2004032724
    • 2004-10-04
    • SIEMENS CORP RES INCGEORGESCU BOGDANZHOU XIANG SEANCOMANICIU DORINKRISHNAN SRIRAM
    • GEORGESCU BOGDANZHOU XIANG SEANCOMANICIU DORINKRISHNAN SRIRAM
    • G06K9/00G06T7/20
    • G06T7/20G06T7/0016G06T7/251G06T2207/10132G06T2207/30048
    • [0061] A system and method for local deformable motion analysis and for accurately tracking motion of an object isolating local motion of an object from global motion of an object is disclosed. The object is viewed in an image sequence and image regions are sampled to identify object image regions and background image regions. The motion of at least one of the identified background image regions is estimated to identify those background image regions affected by global motion. Motion from multiple background image regions are combined to measure the global motion in that image frame. The measured global motion in the object image regions are compensated to measure local motion of the object and the local motion of the object is tracked. A system and method for accurately measuring the local deformable motion of an object as the relative motion between two control point sets is disclosed. The point sets are defined as the inner contour and the outer contour of an object. The motion of the control point sets is estimated and the relative motion is used to characterize the local deformation and local motion of the object
    • 公开了一种用于局部可变形运动分析和准确跟踪物体的运动的系统和方法,该物体隔离物体的局部运动与物体的全局运动。 该对象在图像序列中被查看并且图像区域被采样以识别对象图像区域和背景图像区域。 估计所识别的背景图像区域中的至少一个的运动以识别受全局运动影响的那些背景图像区域。 来自多个背景图像区域的运动被组合以测量该图像帧中的全局运动。 对物体图像区域中的测量的全局运动进行补偿以测量物体的局部运动,并跟踪物体的局部运动。 公开了一种用于精确测量物体的局部可变形运动的系统和方法,作为两个控制点集之间的相对运动。 点集被定义为对象的内部轮廓和外部轮廓。 估计控制点集的运动,并使用相对运动来表征物体的局部变形和局部运动
    • 6. 发明申请
    • MISSING DATA APPROACHES IN MEDICAL DECISION SUPPORT SYSTEMS
    • 医疗决策支持系统丢失数据处理方法
    • WO2006088983A3
    • 2007-03-01
    • PCT/US2006005388
    • 2006-02-16
    • SIEMENS MEDICAL SOLUTIONSKRISHNAN SRIRAMRAO R BHARAT
    • KRISHNAN SRIRAMRAO R BHARAT
    • G06F19/00
    • G16H50/20G16H10/60
    • Missing data is addressed in a medical decision support system. The classifier applied to the patient record with missing data is obtained as a function of the available data. For example, one of a plurality of different classifiers is selected based on the features available in the patient record to be classified. The different classifiers are developed using different feature sets. The classifier developed using a feature set closest to or a sub-set of the features available in the patient record is selected for classifying the patient record. As another example, features in a training set corresponding to features available in the patient record are used to build a classifier. The classifier is applied to the patient record by inputting the available features of the patient record.
    • 缺失的数据在医疗决策支持系统中得到解决。 作为可用数据的函数获得应用于具有缺失数据的病人记录的分类器。 例如,基于要分类的患者记录中可用的特征来选择多个不同分类器之一。 不同的分类器是使用不同的特征集开发的。 选择使用最接近或者患者记录中可用特征的子集的特征集开发的分类器用于对患者记录进行分类。 作为另一示例,使用对应于患者记录中可用特征的训练集中的特征来建立分类器。 通过输入患者记录的可用特征将分类器应用于患者记录。