会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明申请
    • METHOD FOR STRUCTURING A DATA STOCK THAT IS STORED ON AT LEAST ONE STORAGE MEDIUM
    • 分类程序至少一个存储介质存储的作物的
    • WO2006037747A2
    • 2006-04-13
    • PCT/EP2005054891
    • 2005-09-28
    • SIEMENS AGTRESP VOLKERYU KAIYU SHIPENG
    • TRESP VOLKERYU KAIYU SHIPENG
    • G06F17/30
    • G06K9/6226G06F17/18
    • The invention relates to a non-parametric Bayes method for analysing data records, in which elements occur with a specific frequency. The installed model retains the size of earlier extensions, in which latent factors of each data record (e.g. themes of documents) were investigated, whilst at the same time permitting the investigation of the cluster structures of data records, which reflect the statistical dependency of the latent factors. Compared to parametric Bayes modelling, the non-parametric model that is induced by a Dirichlet process (DP) is sufficiently flexible to reveal the data structure. Instead of having to use the Markov chain Monte Carlo (MCMC), which is slow with our specifications, the inventive method introduces an efficient variational inference, which is based on a finite, highly-dimensioned approximation of (DP).
    • 该专利描述了一种用于数据集,其中,以一定的频率发生的元素的分析的非参数贝叶斯法。 引进的模型保留了以前的方法对每个数据集的潜在因素进行了检查(文件ž。B.主题)的实力,但同时允许反映潜在因素之间的统计相关记录的集群结构的调查。 与参数贝叶斯建模相比是通过诱导非参数模型灵活,因为必要的数据的结构的Dirichlet过程(DP),以暴露。 取而代之的是马尔可夫链蒙特卡罗(MCMC)依靠,这与我们的规格慢,到位ER-进行正确的程序基于DP的有限,高尺寸近似的有效变推论。