会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • TURBINE BLADE SQUEALER TIP WITH VORTEX DISRUPTING FENCE
    • 涡轮叶片冷却器尖端与涡旋破坏的围栏
    • WO2017146680A1
    • 2017-08-31
    • PCT/US2016/019024
    • 2016-02-23
    • SIEMENS AKTIENGESELLSCHAFTSIEMENS ENERGY, INC.
    • RODRIGUEZ, Jose L.
    • F01D5/20
    • F01D5/20F05D2260/202
    • A squealer tip (30) for a turbine blade (1) includes an end cap (32) disposed over an airfoil outer wall (12), a pressure side tip wall (34) extending radially from the end cap (32) and aligned with an outer surface (14a) of an airfoil pressure sidewall (14), and a suction side tip wall (36) extending radially from the end cap (32) and aligned with an outer surface (16a) of an airfoil suction sidewall (16). A plurality of coolant openings (38) are formed through the end cap (32) between the pressure side tip wall (34) and the suction side tip wall (36), the coolant openings (38) being fluidically connected to a blade internal cavity (28). The squealer tip (30) further includes a fence structure (40) extending radially from the end cap (32) and positioned adjacent to one or more (38a-b) of the coolant openings (38), for shielding a coolant ejected from said one or more coolant openings (38a-b) from a vortex formed by a gas path fluid flow over the squealer tip (30).
    • 一种用于涡轮机叶片(1)的静音器尖端(30)包括设置在翼形件外壁(12)上的端盖(32),压力侧尖端壁(34),所述压力侧尖端壁 (32)并且与翼型压力侧壁(14)的外表面(14a)对齐,以及从端盖(32)径向延伸并与外表面(16a)对齐的吸力侧末端壁(36) 的翼型吸力侧壁(16)。 在压力侧顶壁(34)和吸力侧顶壁(36)之间穿过端盖(32)形成多个冷却剂开口(38),冷却剂开口(38)流体连接到叶片内腔 (28)。 凹槽顶端(30)还包括从端盖(32)径向延伸且邻近冷却剂开口(38)中的一个或多个(38a-b)定位的挡板结构(40),用于屏蔽从所述端盖 一个或多个冷却剂开口(38a-b)来自由气路流体流过声音提示器尖端(30)上方的涡流形成的涡流。
    • 2. 发明申请
    • TURBINE ENGINE TEMPERATURE CONTROL SYSTEM WITH HEATING ELEMENT FOR A GAS TURBINE ENGINE
    • 涡轮发动机温度控制系统,带燃气涡轮发动机加热元件
    • WO2014163900A1
    • 2014-10-09
    • PCT/US2014/018703
    • 2014-02-26
    • SIEMENS AKTIENGESELLSCHAFTSIEMENS ENERGY, INC.
    • RODRIGUEZ, Jose L.
    • F01D21/12F01D25/26F01K13/02
    • F01D25/08F01D21/12F01D25/26F05D2260/601
    • A turbine engine temperature control system configured to limit thermal gradients from being created within an outer casing surrounding a turbine airfoil assembly during shutdown of a gas turbine engine and for preheating an engine during a cold startup is disclosed. By reducing thermal gradients caused by hot air buoyancy within the mid-region cavities in the outer casing, arched and sway-back bending of the outer casing is prevented, thereby reducing the likelihood of blade tip rub, and potential blade damage, during a warm restart. The turbine engine temperature control system may also be used for cold startup conditions to heat engine components such that gaps between turbine airfoil tips and adjacent blade rings can be made larger from thermal expansion, thereby reducing the risk of damage. The turbine engine temperature control system may operate during turning gear system operation after shutdown of the gas turbine engine or during a cold startup
    • 公开了一种涡轮发动机温度控制系统,其被配置为在冷启动期间限制在燃气涡轮发动机关闭期间以及用于预热发动机的涡轮机翼型组件周围的外壳内产生的热梯度。 通过减少外壳中部区域腔内的热空气浮力引起的热梯度,防止外壳的拱形和摇摆弯曲,从而降低了在温暖期间叶片尖端摩擦和潜在的叶片损坏的可能性 重新开始。 涡轮发动机温度控制系统也可以用于冷启动条件以加热发动机部件,使得涡轮机翼尖和相邻叶片环之间的间隙可以由热膨胀做得更大,从而降低损坏的风险。 涡轮发动机温度控制系统可以在关闭燃气涡轮发动机之后或在冷启动期间在转动齿轮系统操作期间操作
    • 5. 发明申请
    • TURBINE ENGINE SHUTDOWN TEMPERATURE CONTROL SYSTEM
    • 涡轮发动机关闭温度控制系统
    • WO2014176085A1
    • 2014-10-30
    • PCT/US2014/034296
    • 2014-04-16
    • SIEMENS AKTIENGESELLSCHAFTSIEMENS ENERGY, INC.
    • RODRIGUEZ, Jose L.LITTLE, David A.ZHANG, JipingPILAPIL, Patrick M.
    • F01D11/24F01D19/02F01D25/26F02C7/18
    • F01D11/24F01D19/02F01D25/26F02C7/18
    • A turbine engine shutdown temperature control system (10) configured to foster consistent air temperature within cavities (12) surrounding compressor and turbine blade assemblies (14, 16) to eliminate turbine and compressor blade tip rub during warm restarts of gas turbine engines (22) is disclosed. The turbine engine shutdown temperature control system (10) may include one or more air amplifiers (24) positioned in a turbine case (34). An exhaust outlet (26) of the air amplifier (24) may extend into a cavity (12) created by a turbine case (34) and may be configured to exhaust air in a generally circumferential direction to entrain air within the cavity (12) to flow circumferentially to establish a consistent air temperature within the cavity (12) thereby preventing uneven cooling of turbine engine components (38) after shutdown and prevent damage to turbine components during a warm restart.
    • 涡轮发动机关闭温度控制系统(10),其构造成在围绕压缩机和涡轮机叶片组件(14,16)的空腔(12)内促进恒定的空气温度,以在燃气涡轮发动机(22)的热重启期间消除涡轮机和压缩机叶片尖端摩擦, 被披露。 涡轮发动机关闭温度控制系统(10)可以包括定位在涡轮壳体(34)中的一个或多个空气放大器(24)。 空气放大器(24)的排气出口(26)可以延伸到由涡轮壳体(34)产生的空腔(12)中,并且可以被配置成沿大致圆周方向排出空气以将空气夹带在空腔(12)内, 以周向流动以在空腔(12)内建立一致的空气温度,从而防止在关闭之后涡轮发动机部件(38)的不均匀冷却,并且在暖重启期间防止对涡轮机部件的损坏。
    • 6. 发明申请
    • TURBINE AIRFOIL WITH INTERNAL COOLING SYSTEM HAVING NEARWALL COOLING CHANNELS FORMED FROM AN INNER WALL FORMED SEPARATELY FROM AN OUTER WALL FORMING THE TURBINE AIRFOIL
    • 具有内部冷却系统的涡轮机空气具有从外壁形成的内壁冷却通道从外壁分离形成涡轮机空气
    • WO2016148695A1
    • 2016-09-22
    • PCT/US2015/020921
    • 2015-03-17
    • SIEMENS ENERGY, INC.
    • RODRIGUEZ, Jose L.WIEBE, David J.JAMES, Allister WilliamMERRILL, Gary B.
    • F01D5/18
    • F01D5/188F05D2230/644
    • An airfoil (10) for a gas turbine engine is disclosed in which the airfoil (10) includes an internal cooling system (14) formed from one or more midchord cooling channels (16) with at least one inner wall (18) positioned within the midchord cooling channel (16) forming a nearwall cooling channel (20). The inner wall (18) may be held in place with an inner wall connection system (22). The inner wall connection system (22) may be configured such that the inner wall (18) can slide spanwise and may have a limited degree of freedom to move towards a pressure or suction side (26, 28), or both. With the inner wall (18) being positioned within the airfoil (10) and not being rigidly connected to the airfoil (10), there exists little, if any, thermal stress between the inner wall (18) and the outer wall (30) forming the airfoil (10). The inner wall (18) may be formed via a bi-cast process in which the inner wall (18) has a higher melting point than the airfoil (10).
    • 公开了一种用于燃气涡轮发动机的翼型件(10),其中翼型件(10)包括由一个或多个中间冷却通道(16)形成的内部冷却系统(14),其中至少一个内壁(18)位于 形成近壁冷却通道(20)的中间冷却通道(16)。 内壁(18)可以用内壁连接系统(22)保持就位。 内壁连接系统(22)可以被构造成使得内壁(18)能够翼展地滑动,并且可以具有朝向压力或吸力侧(26,28)或两者移动的有限的自由度。 在内壁(18)定位在翼型件(10)内并且不刚性地连接到翼型件(10)的情况下,内壁(18)和外壁(30)之间的热应力几乎不存在, 形成翼型件(10)。 内壁(18)可以通过双壁铸造工艺形成,其中内壁(18)具有比翼型(10)更高的熔点。
    • 7. 发明申请
    • TURBINE AIRFOIL WITH AN INTERNAL COOLING SYSTEM HAVING TRIP STRIPS WITH REDUCED PRESSURE DROP
    • 具有减少压力下降的牵引带的内部冷却系统的涡轮机
    • WO2015100082A1
    • 2015-07-02
    • PCT/US2014/070720
    • 2014-12-17
    • SIEMENS AKTIENGESELLSCHAFTSIEMENS ENERGY, INC.
    • RODRIGUEZ, Jose L.GOLSEN, Matthew J.
    • F01D5/18
    • F01D5/188F01D5/187F01D9/02F05D2240/127F05D2250/711F05D2250/712F05D2260/2212F05D2260/22141
    • A turbine airfoil (10) usable in a turbine engine and having at least one cooling system (14) with an efficient trip strip (16) is disclosed. At least a portion of the cooling system (14) may include one or more cooling channels (18) having one or more trip strips (16) protruding from an inner surface (20) forming the cooling channel (18). The trip strip (16) may have improved operating characteristics including enhanced heat transfer capabilities and a substantial reduction in pressure drop typically associated with conventional trip strips (16). In at least one embodiment, the trip strip (16) may have a cross-sectional area with a first section (24) of an upstream surface (26) of the trip strip (16) being positioned nonparallel and nonorthogonal to a surface (20) forming the cooling system channel (18) extending upstream from the at least one trip strip (16) and a concave shaped downstream surface (28) of the at least one trip strip (16) that enables separated flow to reattach to the cooling fluid flow.
    • 公开了一种可用于涡轮发动机并且具有至少一个具有有效跳闸带(16)的冷却系统(14)的涡轮机翼型件(10)。 冷却系统(14)的至少一部分可以包括具有从形成冷却通道(18)的内表面(20)突出的一个或多个跳闸条(16)的一个或多个冷却通道(18)。 脱扣带(16)可以具有改进的操作特性,包括增强的传热能力和通常与常规跳闸条(16)相关联的压降的显着降低。 在至少一个实施例中,跳闸带(16)可以具有横截面积,其中跳闸带(16)的上游表面(26)的第一部分(24)被定位成与表面(20)不平行和非正交 )形成从所述至少一个跳闸带(16)的上游延伸的所述冷却系统通道(18)和所述至少一个跳闸条(16)的凹形下游表面(28),其使得能够分离的流动重新连接到所述冷却流体 流。
    • 8. 发明申请
    • TURBINE CYLINDER CAVITY HEATED RECIRCULATION SYSTEM
    • 涡轮缸加热再循环系统
    • WO2014164095A1
    • 2014-10-09
    • PCT/US2014/020505
    • 2014-03-05
    • SIEMENS ENERGY, INC.
    • PEPPERMAN, Barton M.YIN, YanRODRIGUEZ, Jose L.LANDRUM, Evan C.ZHANG, Jiping
    • F01D11/24F01D25/10F02C7/26
    • F01D25/10F01D11/24F02C7/26F05D2260/20
    • A turbine engine heating system (10) configured to heat compressor and turbine blade assemblies (12, 14) to eliminate turbine and compressor blade tip rub during warm restarts of gas turbine engines (16) is disclosed. The turbine engine heating system (10) may include a heating air extraction system (18) configured to withdraw air from the turbine engine (16) and to pass that air then a heating element (20) configured to increase a temperature of the air supplied by the heating air extraction system (18). The air may then be passed to a heating air supply system (22) via an air movement device (24). The heating air supply system (22) may be in communication with a turbine cylinder cavity (26) of the turbine engine (16) positioned radially outward from at least one turbine assembly (14). The heated air may be passed into the turbine cylinder cavity (26) to reduce the cooling rate of the turbine vane carriers (28) after shutdown and before a warm restart to limit tip rubbing.
    • 公开了一种涡轮发动机加热系统(10),其构造成加热压缩机和涡轮叶片组件(12,14),以在燃气涡轮发动机(16)的热重启期间消除涡轮机和压缩机叶片尖端摩擦。 涡轮发动机加热系统(10)可以包括被配置为从涡轮发动机(16)抽出空气并且使空气通过加热元件(20)的加热空气抽取系统(18),该加热元件构造成增加供应的空气的温度 通过加热空气抽取系统(18)。 然后可以经由空气移动装置(24)将空气传送到加热空气供应系统(22)。 加热空气供应系统(22)可以与从至少一个涡轮机组件(14)径向向外定位的涡轮发动机(16)的涡轮机气缸腔(26)连通。 加热的空气可以进入涡轮机气缸腔(26),以降低关闭之后和在热重启之前的涡轮叶片载体(28)的冷却速率以限制末端摩擦。