会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明授权
    • Long-query retrieval
    • 长查询检索
    • US08326820B2
    • 2012-12-04
    • US12571302
    • 2009-09-30
    • Zhiwei LiLei ZhangRui CaiWei-Ying MaHeung-Yeung Shum
    • Zhiwei LiLei ZhangRui CaiWei-Ying MaHeung-Yeung Shum
    • G06F17/30
    • G06F17/3028G06F17/30448
    • Described herein is a technology that facilitates efficient large-scale similarity-based retrieval. In several embodiments documents, images, and/or other multimedia files are compactly represented and efficiently indexed to enable robust search using a long-query in a large-scale corpus. As described herein, these techniques include performing decomposition of a file, e.g., a document or document-like representation. The techniques use dimension reduction to obtain three parts, topic-related words (major semantics), document specific words (minor semantics), and background words, representing the major semantics in a feature vector and the minor semantics as keywords. Using the techniques described, file vectors are matched in a topic model and the results ranked based on the keywords.
    • 这里描述了一种有助于有效的大规模相似性检索的技术。 在几个实施例中,文档,图像和/或其他多媒体文件被紧凑地表示并且被有效地索引,以使得能够使用大规模语料库中的长查询进行鲁棒搜索。 如这里所述,这些技术包括执行文件的分解,例如文档或类似文档的表示。 这些技术使用维度缩减来获得三个部分,主题相关词(主要语义),文档特定词(次要语义)和背景词,表示特征向量中的主要语义和次要语义作为关键字。 使用所描述的技术,在主题模型中匹配文件向量,并根据关键字对结果进行排名。
    • 5. 发明授权
    • Identifying visual contextual synonyms
    • 识别视觉上下文同义词
    • US09082040B2
    • 2015-07-14
    • US13107717
    • 2011-05-13
    • Rui CaiZhiwei LiLei ZhangWenbin Tang
    • Rui CaiZhiwei LiLei ZhangWenbin Tang
    • G06F17/30G06K9/46
    • G06K9/4671G06F17/30256G06K9/4676
    • Tools and techniques for identifying visual contextual synonyms are described herein. The described operations use visual words having similar contextual distributions as contextual synonyms to identify and describe visual objects that share semantic meaning. The contextual distribution of a visual word is described using the statistics of co-occurrence and spatial information averaged over image patches that share the visual word. In various implementations, the techniques are employed to construct a visual contextual synonym dictionary for a large visual vocabulary. In various implementations, the visual contextual synonym dictionary narrows the semantic gap for large-scale visual search.
    • 本文描述了用于识别视觉上下文同义词的工具和技术。 所描述的操作使用具有相似语境分布的视觉词作为上下文同义词来识别和描述共享语义意义的视觉对象。 使用共享视觉词的图像补丁上平均的同现和空间信息的统计来描述视觉词的语境分布。 在各种实现中,使用这些技术来构建用于大型视觉词汇表的视觉上下文同义词字典。 在各种实现中,视觉上下文同义词词典缩小了大规模视觉搜索的语义差距。
    • 6. 发明申请
    • IDENTIFYING VISUAL CONTEXTUAL SYNONYMS
    • 识别视觉语境同步
    • US20120290577A1
    • 2012-11-15
    • US13107717
    • 2011-05-13
    • Rui CaiZhiwei LiLei ZhangWenbin Tang
    • Rui CaiZhiwei LiLei ZhangWenbin Tang
    • G06F17/30
    • G06K9/4671G06F17/30256G06K9/4676
    • Tools and techniques for identifying visual contextual synonyms are described herein. The described operations use visual words having similar contextual distributions as contextual synonyms to identify and describe visual objects that share semantic meaning. The contextual distribution of a visual word is described using the statistics of co-occurrence and spatial information averaged over image patches that share the visual word. In various implementations, the techniques are employed to construct a visual contextual synonym dictionary for a large visual vocabulary. In various implementations, the visual contextual synonym dictionary narrows the semantic gap for large-scale visual search.
    • 本文描述了用于识别视觉上下文同义词的工具和技术。 所描述的操作使用具有相似语境分布的视觉词作为上下文同义词来识别和描述共享语义意义的视觉对象。 使用共享视觉词的图像补丁上平均的同现和空间信息的统计来描述视觉词的语境分布。 在各种实现中,使用这些技术来构建用于大型视觉词汇表的视觉上下文同义词字典。 在各种实现中,视觉上下文同义词词典缩小了大规模视觉搜索的语义差距。
    • 7. 发明申请
    • Long-Query Retrieval
    • 长查询检索
    • US20110078159A1
    • 2011-03-31
    • US12571302
    • 2009-09-30
    • Zhiwei LiLei ZhangRui CaiWei-Ying MaHeung-Yeung Shum
    • Zhiwei LiLei ZhangRui CaiWei-Ying MaHeung-Yeung Shum
    • G06F17/30
    • G06F17/3028G06F17/30448
    • Described herein is a technology that facilitates efficient large-scale similarity-based retrieval. In several embodiments documents, images, and/or other multimedia files are compactly represented and efficiently indexed to enable robust search using a long-query in a large-scale corpus. As described herein, these techniques include performing decomposition of a file, e.g., a document or document-like representation. The techniques use dimension reduction to obtain three parts, topic-related words (major semantics), document specific words (minor semantics), and background words, representing the major semantics in a feature vector and the minor semantics as keywords. Using the techniques described, file vectors are matched in a topic model and the results ranked based on the keywords.
    • 这里描述了一种有助于有效的大规模相似性检索的技术。 在几个实施例中,文档,图像和/或其他多媒体文件被紧凑地表示并且被有效地索引,以使得能够使用大规模语料库中的长查询进行鲁棒搜索。 如这里所述,这些技术包括执行文件的分解,例如文档或类似文档的表示。 这些技术使用维度缩减来获得三个部分,主题相关词(主要语义),文档特定词(次要语义)和背景词,表示特征向量中的主要语义和次要语义作为关键字。 使用所描述的技术,在主题模型中匹配文件向量,并根据关键字对结果进行排名。
    • 8. 发明申请
    • LEARNING TO RANK LOCAL INTEREST POINTS
    • 学习排名本地兴趣点
    • US20120301014A1
    • 2012-11-29
    • US13118282
    • 2011-05-27
    • Rong XiaoRui CaiZhiwei LiLei Zhang
    • Rong XiaoRui CaiZhiwei LiLei Zhang
    • G06K9/62G06K9/46
    • G06K9/4676G06F16/583
    • Tools and techniques for learning to rank local interest points from images using a data-driven scale-invariant feature transform (SIFT) approach termed “Rank-SIFT” are described herein. Rank-SIFT provides a flexible framework to select stable local interest points using supervised learning. A Rank-SIFT application detects interest points, learns differential features, and implements ranking model training in the Gaussian scale space (GSS). In various implementations a stability score is calculated for ranking the local interest points by extracting features from the GSS and characterizing the local interest points based on the features being extracted from the GSS across images containing the same visual objects.
    • 本文描述了使用称为Rank-SIFT的数据驱动的尺度不变特征变换(SIFT)方法学习从图像对本地兴趣点进行排名的工具和技术。 Rank-SIFT提供了一个灵活的框架,使用监督学习选择稳定的本地兴趣点。 Rank-SIFT应用程序检测兴趣点,学习差异特征,并实现高斯尺度空间(GSS)中的排名模型训练。 在各种实施方式中,通过从GSS提取特征并基于从包含相同视觉对象的图像从GSS提取的特征来表征局部兴趣点来计算稳定性分数以对局部兴趣点进行排名。