会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Method of making a variable power resistor
    • 制作可变功率电阻的方法
    • US5181313A
    • 1993-01-26
    • US818597
    • 1992-01-09
    • Ronald C. NonnenmacherKathleen SchulzRichard C. LewisRichard Riley
    • Ronald C. NonnenmacherKathleen SchulzRichard C. LewisRichard Riley
    • H01C1/084H01C10/30
    • H01C1/084H01C10/305Y10T29/49099Y10T29/49101
    • A variable power resistor includes a heat sink having a front face and a back face with an electrically insulating, thermally conductive ceramic coating bonded directly onto the front face such that the ceramic coating is in direct thermal contact with the heat sink. A plurality of discrete thick film conductive circuit pads are positioned on the electrically insulating, thermally conductive ceramic coating and a thick film resistive layer is positioned over portions of the conductive circuit pads such that the pads are electrically connected in series. The variable power resistor also includes a moveable contactor capable of contacting the circuit pads in order to vary the resistance of the resistor and an electrical connection between the resistor and an electrical circuit. The electrically insulating, thermally conductive ceramic coating may be plasma sprayed onto the heat sink, while the resistive circuit may be screen printed onto the ceramic coating.
    • 可变功率电阻器包括具有正面和背面的散热器,其具有直接结合到前表面上的电绝缘导热陶瓷涂层,使得陶瓷涂层与散热器直接热接触。 多个分立的厚膜导电电路焊盘位于电绝缘的导热陶瓷涂层上,并且厚膜电阻层位于导电电路焊盘的部分上,使得焊盘电连接成串联连接。 可变功率电阻器还包括能够接触电路板的可移动接触器,以便改变电阻器的电阻以及电阻器和电路之间的电连接。 电绝缘导热陶瓷涂层可以被等离子体喷涂到散热器上,而电阻电路可以被丝网印刷到陶瓷涂层上。
    • 2. 发明授权
    • Variable power resistor
    • 可变功率电阻
    • US5119063A
    • 1992-06-02
    • US629885
    • 1990-12-19
    • Ronald C. NonnenmacherKathleen SchulzRichard C. LewisRichard Riley
    • Ronald C. NonnenmacherKathleen SchulzRichard C. LewisRichard Riley
    • H01C1/084H01C10/30
    • H01C10/305H01C1/084
    • A variable power resistor includes a heat sink having a front face and a back face with an electrically insulating, thermally conductive ceramic coating bonded directly onto the front face such that the ceramic coating is in direct thermal contact with the heat sink. A plurality of discrete thick film conductive circuit pads are positioned on the electrically insulating, thermally conductive ceramic coating and a thick film resistive layer is positioned over portions of the conductive circuit pads such that the pads are electrically connected in series. The variable power resistor also includes a moveable contactor capable of contacting the circuit pads in order to vary the resistance of the resistor and an electrical connection between the resistor and an electrical circuit. The electrically insulating, thermally conductive ceramic coating may be plasma sprayed onto the heat sink, while the resistive circuit may be screen printed onto the ceramic coating.
    • 可变功率电阻器包括具有正面和背面的散热器,其具有直接结合到前表面上的电绝缘导热陶瓷涂层,使得陶瓷涂层与散热器直接热接触。 多个分立的厚膜导电电路焊盘位于电绝缘的导热陶瓷涂层上,并且厚膜电阻层位于导电电路焊盘的部分上,使得焊盘电连接成串联连接。 可变功率电阻器还包括能够接触电路板的可移动接触器,以便改变电阻器的电阻以及电阻器和电路之间的电连接。 电绝缘导热陶瓷涂层可以被等离子体喷涂到散热器上,而电阻电路可以被丝网印刷到陶瓷涂层上。
    • 4. 发明授权
    • Magnetic position sensor having opposed tapered magnets
    • 具有相对的锥形磁体的磁性位置传感器
    • US06211668B1
    • 2001-04-03
    • US09208296
    • 1998-12-09
    • John S. DueslerCraig A. JarrardRobert L. NewmanRonald C. NonnenmacherDavid S. PfaffenbergerDavid J. Miller
    • John S. DueslerCraig A. JarrardRobert L. NewmanRonald C. NonnenmacherDavid S. PfaffenbergerDavid J. Miller
    • G01B714
    • G01D5/145G01B7/003G01B7/30
    • In accordance with the present invention, a non-contacting position sensor using bipolar tapered magnets is provided. A non-contacting position sensor in accordance with the preferred embodiment uses a pole piece having a first plate and a second plate. Four magnets are affixed to the first plate and second plate. Each magnet has a thick end and a thin end. Two magnets generate a linearly varying magnetic field having a first polarity, while the other two magnets generate a linearly varying magnetic filed having a second polarity. An air gap is formed in the space between the four magnets. A magnetic flux sensor is positioned within the air gap. The component whose position is to be monitored is rigidly attached to either the pole piece or the magnetic flux sensor, causing the magnetic flux sensor to move relative to the magnets within the air gap as the component moves. A varying magnetic field is detected by the magnetic flux sensor, resulting in a signal from the magnetic flux sensor that varies according to its position relative to the four magnets. The signal from the magnetic flux sensor is used to provide an indication of the position of the component to be monitored.
    • 根据本发明,提供了使用双极锥形磁体的非接触位置传感器。 根据优选实施例的非接触位置传感器使用具有第一板和第二板的极片。 四个磁体固定在第一板和第二板上。 每个磁体都有一个较厚的端部和一个较薄的端部。 两个磁体产生具有第一极性的线性变化的磁场,而另外两个磁体产生具有第二极性的线性变化的磁场。 在四个磁体之间的空间中形成气隙。 磁通量传感器位于气隙内。 要监视其位置的部件刚性地附接到极靴或磁通量传感器,使得磁通量传感器随着部件移动而相对于气隙内的磁体移动。 由磁通量传感器检测到变化的磁场,导致来自磁通量传感器的信号根据其相对于四个磁体的位置而变化。 来自磁通量传感器的信号用于提供待监测部件的位置的指示。
    • 5. 发明授权
    • Two axis position sensor using sloped magnets to generate a variable magnetic field and hall effect sensors to detect the variable magnetic field
    • 双轴位置传感器使用倾斜磁铁产生可变磁场和霍尔效应传感器来检测可变磁场
    • US06175233B1
    • 2001-01-16
    • US08999585
    • 1998-02-02
    • Jeffrey L. McCurleyJames E. WhiteCraig A. JarrardRonald C. NonnenmacherJohn Zdanys, Jr.Thomas R. Olson
    • Jeffrey L. McCurleyJames E. WhiteCraig A. JarrardRonald C. NonnenmacherJohn Zdanys, Jr.Thomas R. Olson
    • G01B714
    • G01D5/145F16H59/68G01B7/003G01B7/004G01B7/023Y10T74/20201
    • A dual-axes position sensor 10 having an outer housing 12, an actuator 40, a linear Hall effect sensor assembly 20 for detecting position changes along a first (y) axis, and a linear Hall effect sensor assembly 30 for detecting position changes along a second (x) axis is disclosed. The housing 12 is preferably made out of a non-magnetic material such as plastic. Actuator 40 is rod shaped and coupled to a movable device or shaft (not shown) that is to have its position sensed. The linear Hall effect sensor assembly 20 is unattachably positioned to set on lip 52 of the housing 12, and includes a magnetically conducting pole piece 26, a magnet assembly 24 comprising an upper magnet 21 and a lower magnet 23 that are separated by an air gap 25. Magnet assembly 24 and pole piece 26 are positioned around a Hall sensor device support 14 in a“U” shaped configuration or form. Hall sensor device support 14 is fixedly attached to housing 12 via attachment area 54. Linear Hall effect sensor assembly 20 also includes a positionally fixed Hall effect sensor element 22 attached to Hall sensor device support 14 on surface 15. Linear Hall effect sensor assembly 30 is positioned approximately 90 degrees from and to linear Hall effect sensor assembly 20.
    • 具有外壳12,致动器40,用于检测沿着第一(y)轴的位置变化的线性霍尔效应传感器组件20的双轴位置传感器10以及用于检测沿着第一(y)轴的位置变化的线性霍尔效应传感器组件30) 第二(x)轴被公开。 壳体12优选地由诸如塑料的非磁性材料制成。 致动器40是棒形的并且联接到可以检测其位置的可移动装置或轴(未示出)。 线性霍尔效应传感器组件20不可靠地定位成设置在壳体12的唇缘52上,并且包括导磁极片26,包括上磁体21和下磁体23的磁体组件24,磁体组件24由气隙 磁体组件24和极片26以“U”形配置或形式围绕霍尔传感器装置支撑件14定位。 霍尔传感器装置支撑件14经由附接区域54固定地附接到壳体12.线性霍尔效应传感器组件20还包括一个位于固定的霍尔效应传感器元件22,其连接到表面15上的霍尔传感器装置支撑件14上。线性霍尔效应传感器组件30是 定位与线性霍尔效应传感器组件20大约90度。
    • 6. 发明授权
    • Non-contacting position sensor using radial bipolar tapered magnets
    • 使用径向双极锥形磁体的非接触式位置传感器
    • US06222359B1
    • 2001-04-24
    • US09335546
    • 1999-06-18
    • John S. DueslerCraig A. JarrardRobert L. NewmanRonald C. NonnenmacherDavid S. PfaffenbergerDavid J. Miller
    • John S. DueslerCraig A. JarrardRobert L. NewmanRonald C. NonnenmacherDavid S. PfaffenbergerDavid J. Miller
    • G01B730
    • G01D5/145
    • A non-contacting position sensor having radial bipolar tapered magnets. The sensor has a semicircular first plate and a second plate. Four semicircular magnets are affixed to the first plate and second plate. Each magnet has a thick end and a thin end. Two magnets generate a linearly varying magnetic field having a first polarity, while the other two magnets generate a linearly varying magnetic field having a second polarity. An air gap is formed in the space between the four magnets. A magnetic flux sensor is positioned within the air gap. The object whose position is to be monitored is rigidly attached to the magnet assembly, causing the magnetic flux sensor to move relative to the magnets within the air gap as the component moves. A varying magnetic field is detected by the magnetic flux sensor, resulting in an electrical signal from the magnetic flux sensor that varies according to its position relative to the four magnets.
    • 具有径向双极锥形磁体的非接触位置传感器。 传感器具有半圆形的第一板和第二板。 四个半圆形磁体固定在第一板和第二板上。 每个磁体都有一个较厚的端部和一个较薄的端部。 两个磁体产生具有第一极性的线性变化的磁场,而另外的两个磁体产生具有第二极性的线性变化的磁场。 在四个磁体之间的空间中形成气隙。 磁通量传感器位于气隙内。 要监测其位置的物体刚性地附接到磁体组件,使得磁通量传感器在部件移动时相对于气隙内的磁体移动。 由磁通量传感器检测到变化的磁场,导致来自磁通量传感器的电信号根据其相对于四个磁体的位置而变化。
    • 7. 发明授权
    • Dual rotational and linear position sensor
    • 双旋转和线性位置传感器
    • US6057682A
    • 2000-05-02
    • US062408
    • 1998-04-17
    • Jeffrey L. McCurleyJames E. WhiteCraig A. JarrardRonald C. NonnenmacherJohn Zdanys, Jr.Thomas R. OlsonBret W. Shriver
    • Jeffrey L. McCurleyJames E. WhiteCraig A. JarrardRonald C. NonnenmacherJohn Zdanys, Jr.Thomas R. OlsonBret W. Shriver
    • F16H59/68G01B7/14G01B7/30G01D5/14H01H36/00
    • F16H59/68G01D5/145F16H2061/242Y10T74/2003
    • A dual positional hall effect sensor 10 having an outer housing 12, an actuator 14, a linear movement sensor 20, and a rotational movement sensor device 22. The housing 12 includes a lower chamber 24 and an upper chamber 26, with a barrier wall 28 separating therebetween. The actuator 14 is made up of a coupling 32 for coupling to a movable device (not shown) that is to have its position sensed, a rod 34 that extends from the lower to the upper chamber, a collar 36 for retaining the actuator 14 within the lower chamber, and a key 38. The linear motion sensor 20 is unattachably positioned to set on collar 36, and includes a magnetically conducting pole piece 42 and a left and right magnets 44. The magnets 44 and pole piece 42 are positioned around the rod 34 in a "U" shaped configuration. The lower chamber 24 also includes a positionally fixed hall effect sensor 46 and a spring 48 positioned between the barrier wall 28 and the collar 36. The rotational movement sensor 22, located in the upper chamber 26, includes a sensor housing structure 52 that has a groove or slide 54 for insertion and sliding of the key 38. The sensor 22 further includes a magnetically conducting pole piece 56 and a top and bottom magnet 58. A hall sensor 60 is positioned between the two parts of the magnet 58 and fixed in position relative to any rotational movement of the rotational sensor 22.
    • 具有外壳体12,致动器14,线性运动传感器20和旋转运动传感器装置22的双位置霍尔效应传感器10.壳体12包括下室24和上室26,其具有阻挡壁28 在它们之间分离。 致动器14由联接器32构成,用于联接到可检测位置的可移动装置(未示出),从下部延伸到上部腔的杆34,用于将致动器14保持在内部的轴环36 下部腔室和键38.线性运动传感器20不可靠地定位成设置在套环36上,并且包括导磁极片42和左和右磁体44.磁体44和极片42围绕 杆34为“U”形构型。 下腔室24还包括位置固定的霍尔效应传感器46和位于阻挡壁28和轴环36之间的弹簧48.位于上腔室26内的旋转运动传感器22包括传感器壳体结构52,其具有 凹槽或滑块54用于插入和滑动键38.传感器22还包括导磁极片56和顶部和底部磁体58.霍尔传感器60位于磁体58的两个部分之间并固定在位 相对于旋转传感器22的任何旋转运动。
    • 8. 发明授权
    • Method and apparatus for measuring hysteresis of a position sensor
    • 测量位置传感器滞后的方法和装置
    • US4573341A
    • 1986-03-04
    • US737140
    • 1985-05-23
    • Ronald C. NonnenmacherDavid V. Tinder
    • Ronald C. NonnenmacherDavid V. Tinder
    • G01M15/06G01M15/00
    • G01M15/06
    • A method and apparatus is provided for measuring the hysteresis error of a position sensor for a reciprocating element, such as the sensor for determining piston TDC in a reciprocating engine. The sensor is of the proximity type and has a sensing region past which a vane relatively moves. Event timing signals are provided by voltage transitions occasioned by the leading and trailing edges respectively of the vane passing the sensor. The method includes moving a pair of test vanes in opposite directions past the sensor to simulate two passes thereby of a reciprocating vane to generate the event timing signals from the sensor. This may be done by mounting the test vanes on a pair of rotating discs. Independently of the sensor, reference timing signals are generated which are accurately indicative of the positioning of the leading and trailing edges of the one or more test vanes. These reference timing signals may be determined optically. An event timing signal is then compared with a respective corresponding reference timing signal for each of two of the reference timing signals symmetrically disposed with respect to the position to be determined, i.e. TDC, and a difference value is determined for each of those two comparisons. Finally, the two difference values are compared to determine a further difference value, that further difference value being a measure of the hysteresis error.
    • 提供了一种用于测量往复运动元件的位置传感器的滞后误差的方法和装置,例如用于确定往复式发动机中的活塞TDC的传感器。 传感器是接近型的,并且具有通过叶片相对移动的感测区域。 事件定时信号由分别通过传感器的叶片的前缘和后缘引起的电压转换提供。 该方法包括将一对测试叶片沿相反的方向移动通过传感器以模拟往复式叶片的两次通过,从而产生来自传感器的事件定时信号。 这可以通过将测试叶片安装在一对旋转盘上来实现。 独立于传感器,产生参考定时信号,其精确地指示一个或多个测试叶片的前缘和后缘的定位。 这些参考定时信号可以光学地确定。 然后将事件定时信号与对应于要确定的位置即TDC对称设置的两个参考定时信号中的每一个相应的参考定时信号进行比较,并且为这两个比较中的每一个确定差值。 最后,将两个差值进行比较以确定另一个差值,其中差值是滞后误差的度量。