会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Flywheel support system for mobile energy storage
    • 用于移动储能的飞轮支撑系统
    • US5559381A
    • 1996-09-24
    • US148361
    • 1993-11-08
    • Robert W. BosleyHarold A. Rosen
    • Robert W. BosleyHarold A. Rosen
    • B60K6/30B60L11/16B62M1/10F16F15/30F16F15/305F16F15/315H02K5/173H02K7/02H02K7/08H02K7/09H02K9/19
    • H02K9/19B60L11/16B62M1/10F16F15/302F16F15/305F16F15/315H02K5/173H02K7/025H02K7/083B60K6/30H02K7/09Y02E60/16Y02T10/6204Y02T10/641Y02T10/7027Y02T10/7033Y10S903/96
    • A flywheel support system isolates the flywheel and its motor-generator from the driving environment of an electrically powered motor vehicle. A suitable liquid, placed between the outer and vacuum housings of the flywheel assembly, provides buoyancy and damping to the vacuum housing, cooling of the motor-generator, and serves as one of the barriers to rotor energy and angular momentum transfer in the event of an accident or failure. During normal operation, a shearable mechanical gimbal system keeps the vacuum housing centered in the outer housing, reacts the spin moments generated by the motor-generator, and provides a path for the electrical leads into the vacuum housing. In the event of bearing seizure or rotor failure, the mechanical gimbal will shear and allow the vacuum housing to gradually spin down against the fluid. A system of both active and passive axial and radial magnetic bearings supports the rotating assembly including the rotor of the motor-generator. Rotor-stator gap proximity sensors, strategically placed along the axis, permit a minimum gap to be used in the motor-generator. The placement of the center of gravity of the vacuum housing and its contents below the center of buoyancy produces a vertical orientation of the housing in the absence of accelerations, thus minimizing the power consumed by the magnetic support system when the vehicle is parked.
    • 飞轮支撑系统将飞轮及其电动发电机与电动机动车辆的行驶环境隔离开来。 放置在飞轮组件的外壳和真空壳体之间的合适液体为真空壳体提供浮力和阻尼,电动发电机的冷却,并且作为转子能量和角动量传递的障碍之一,在发生 发生事故或失败。 在正常操作期间,可剪切的机械万向节系统将真空壳体保持在外壳中心,使电动发电机产生的自旋力矩反应,并为电气引线进入真空壳体提供路径。 在轴承卡死或转子故障的情况下,机械万向架将剪切并允许真空壳体逐渐向下旋转流体。 主动和被动轴向和径向磁轴承的系统支撑包括电动发电机转子的旋转组件。 沿轴线策略放置的转子 - 定子间隙接近传感器允许在电动发电机中使用最小间隙。 在没有加速度的情况下,真空壳体的重心及其内容物位于浮力中心的位置产生壳体的垂直取向,从而最小化当车辆停放时由磁性支撑系统消耗的功率。
    • 5. 发明申请
    • Satellites and Satellite Fleet Implementation Methods and Apparatus
    • 卫星和卫星舰队实施方法与装置
    • US20090224105A1
    • 2009-09-10
    • US12470611
    • 2009-05-22
    • Glenn N. CaplinHarold A. RosenHarmon C. Fowler
    • Glenn N. CaplinHarold A. RosenHarmon C. Fowler
    • B64G1/24B64G1/10B64G1/44
    • B64G1/1085B64G1/242B64G1/26B64G2001/643
    • A method for implementing a satellite fleet includes launching a group of satellites within a launch vehicle. In an embodiment, the satellites are structurally connected together through satellite outer load paths. After separation from the launch vehicle, nodal separation between the satellites is established by allowing one or more of the satellites to drift at one or more orbits having apogee altitudes below an operational orbit apogee altitude. A satellite is maintained in an ecliptic normal attitude during its operational life, in an embodiment. The satellite's orbit is efficiently maintained by a combination of axial, radial, and canted thrusters, in an embodiment. Satellite embodiments include a payload subsystem, a bus subsystem, an outer load path support structure, antenna assembly orientation mechanisms, an attitude control subsystem adapted to maintain the satellite in the ecliptic normal attitude, and an orbit maintenance/propulsion subsystem adapted to maintain the satellite's orbit.
    • 实施卫星舰队的方法包括在运载火箭中发射一组卫星。 在一个实施例中,卫星在结构上通过卫星外部负载路径连接在一起。 在与运载火箭分离之后,通过允许一个或多个卫星在具有低于操作轨道远地点高度的远地点高度的一个或多个轨道上漂移来建立卫星之间的节点间隔。 在一个实施例中,卫星在其使用寿命期间保持为黄道正常姿态。 在一个实施例中,通过轴向,径向和倾斜推进器的组合有效地维持卫星的轨道。 卫星实施例包括有效载荷子系统,总线子系统,外部负载路径支持结构,天线组件定向机构,适于将卫星维持在黄道正常态度的姿态控制子系统,以及适于维持卫星的卫星的维护/推进子系统 轨道。
    • 7. 发明授权
    • Magnetic bearing system including a control system for a flywheel and
method for operating same
    • 磁轴承系统,包括用于飞轮的控制系统及其操作方法
    • US5998899A
    • 1999-12-07
    • US952451
    • 1997-11-20
    • Harold A. RosenClaude KhalizadehScott B. PanoJoseph J. KubickySeymour N. Rubin
    • Harold A. RosenClaude KhalizadehScott B. PanoJoseph J. KubickySeymour N. Rubin
    • F16C39/06F16F15/315H02K7/02H02K7/09
    • F16C32/0451F16C32/0446F16F15/315H02K7/025H02K7/09F16C2361/55Y02E60/16Y10T74/2119
    • A bearing system for positioning and supporting a rotor having a vertical shaft (20) coincident with a main rotation axis included in a flywheel (10) used for energy storage and high surge power in vehicular applications. The bearing system includes upper and lower radial force generators (110, 210) containing only electromagnets, and upper and lower axial force generators (120, 220) including an electromagnet and a permanent magnet. According to one aspect of the bearing system, each of the bearings includes control circuitry having simple and complex lead networks so as to permit the force generators to rapidly respond to vehicular transients while maintaining a preferred bearing stiffness. The bearing system also includes upper and lower touchdown ball bearings (130, 230) which are engaged only when the radial force generators are unable to maintain the rotor in a predetermined cylindrical volume within the flywheel (10). A capacitive sensor subsystem of the magnetic bearing system and method for controlling the bearing system is also described.
    • PCT No.PCT / US97 / 08661 Sec。 371日期:1997年11月20日 102(e)1997年11月20日日期PCT 1997年6月12日PCT公布。 第WO97 / 48169号公报 日期1997年12月18日用于定位和支撑转子的轴承系统,该转子具有垂直轴(20),其与用于能量存储的飞轮(10)中包括的主旋转轴线重合,并且在车辆应用中具有高浪涌功率。 轴承系统包括仅包含电磁体的上部和下部径向力发生器(110,210),以及包括电磁体和永磁体的上部和下部轴向力发生器(120,220)。 根据轴承系统的一个方面,每个轴承包括具有简单且复杂的引线网络的控制电路,以便允许力发生器在保持优选的轴承刚度的同时快速响应车辆瞬变。 轴承系统还包括只有当径向力发生器不能将转子保持在飞轮(10)内的预定圆柱体积内时才接合的上下接触球轴承(130,230)。 还描述了磁轴承系统的电容式传感器子系统和用于控制轴承系统的方法。
    • 10. 发明授权
    • Satellite communications system employing frequency reuse
    • US4879711A
    • 1989-11-07
    • US108831
    • 1987-10-14
    • Harold A. Rosen
    • Harold A. Rosen
    • H04N7/20H01Q3/40H01Q19/18H01Q25/00H04B7/204H04B7/208
    • H01Q25/00H04B7/2041H04B7/2045
    • A satellite communications system employs separate subsystems for broadcast and point-to-point two-way communications using the same assigned frequency band and employs an antenna system which uses a common reflector (12). The point-to-point subsystem achieves increased communication capacity through the reuse of the assigned frequency band over multiple, contiguous zones (32, 34, 36, 38) covering the area of the earth to be serviced. Small aperture terminals in the zones are serviced by a plurality of high-gain downlink fan beams (29) steered in the east-west direction by frequency address. A special beam-forming network (98) provides in conjunction with an array antenna (20) the multiple zone frequency address function. The satellite (10) employs a filter interconnection matrix (90) for connecting earth terminals in different zones to permit multiple reuse of the entire band of assigned frequencies. A single pool of solid-state transmitters allows rain-disadvantaged users to be assigned higher than normal power at minimum cost and geographically disperses the transmitter intermodulation products. In an alternate embodiment, the satellite (200) employs direct radiating array antennas (202, 204) for reception and transmission. The system (200 ) utilizes hybrid-coupled dual amplifiers (251) to reduce amplifier production costs. In another embodiment, both point-to-point and broadcast services are available on a single polarization by allocating one-half of the frequency spectrum to each service and by using separate direct radiating arrays from horizontal and vertical polarization for both reception (235, 236) and transmission (237, 238). The frequency spectrum is reused in each of the contiguous receive zones (220, 222, 224, 226) and the transmit zones (228, 230, 232, 234) because sufficient spatial isolation is achieved by subdividing the receive zones in two halves (220a, 220b, 222a, 222b, 224a, 224b, 226a, 226b), and by using one-half of the frequency spectrum in each subdivided zone.