会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • RANKER SELECTION FOR STATISTICAL NATURAL LANGUAGE PROCESSING
    • 用于统计自然语言处理的排名选择
    • US20090125501A1
    • 2009-05-14
    • US11938811
    • 2007-11-13
    • Jianfeng GaoGalen AndrewMark JohnsonKristina Toutanova
    • Jianfeng GaoGalen AndrewMark JohnsonKristina Toutanova
    • G06F7/10
    • G06F17/2715
    • Systems and methods for selecting a ranker for statistical natural language processing are provided. One disclosed system includes a computer program configured to be executed on a computing device, the computer program comprising a data store including reference performance data for a plurality of candidate rankers, the reference performance data being calculated based on a processing of test data by each of the plurality of candidate rankers. The system may further include a ranker selector configured to receive a statistical natural language processing task and a performance target, and determine a selected ranker from the plurality of candidate rankers based on the statistical natural language processing task, the performance target, and the reference performance data.
    • 提供了用于选择用于统计自然语言处理的游戏者的系统和方法。 一种公开的系统包括被配置为在计算设备上执行的计算机程序,该计算机程序包括数据存储器,该数据存储器包括用于多个候选排名者的参考演出数据,该参考演出数据是基于每个测试数据的处理来计算的 多个候选排名。 该系统可以进一步包括配置成接收统计自然语言处理任务和性能目标的排队选择器,并且基于统计自然语言处理任务,性能目标和参考性能来确定来自多个候选排名者的选定队员 数据。
    • 3. 发明授权
    • Ranker selection for statistical natural language processing
    • 统计自然语言处理的Ranker选择
    • US07844555B2
    • 2010-11-30
    • US11938811
    • 2007-11-13
    • Jianfeng GaoGalen AndrewMark JohnsonKristina Toutanova
    • Jianfeng GaoGalen AndrewMark JohnsonKristina Toutanova
    • G06F15/18G06E1/00G06E3/00G06G7/00G06N3/02
    • G06F17/2715
    • Systems and methods for selecting a ranker for statistical natural language processing are provided. One disclosed system includes a computer program configured to be executed on a computing device, the computer program comprising a data store including reference performance data for a plurality of candidate rankers, the reference performance data being calculated based on a processing of test data by each of the plurality of candidate rankers. The system may further include a ranker selector configured to receive a statistical natural language processing task and a performance target, and determine a selected ranker from the plurality of candidate rankers based on the statistical natural language processing task, the performance target, and the reference performance data.
    • 提供了用于选择用于统计自然语言处理的游戏者的系统和方法。 一种公开的系统包括被配置为在计算设备上执行的计算机程序,该计算机程序包括数据存储器,该数据存储器包括用于多个候选排名者的参考演出数据,该参考演出数据是基于每个测试数据的处理来计算的 多个候选排名。 该系统可以进一步包括配置成接收统计自然语言处理任务和性能目标的排队选择器,并且基于统计自然语言处理任务,性能目标和参考性能来确定来自多个候选排名者的选定队员 数据。
    • 5. 发明授权
    • Limited-memory quasi-newton optimization algorithm for L1-regularized objectives
    • L1规范化目标的有限存储准牛顿优化算法
    • US07933847B2
    • 2011-04-26
    • US11874199
    • 2007-10-17
    • Galen AndrewJianfeng Gao
    • Galen AndrewJianfeng Gao
    • G06F15/18G06F17/27G06N3/08G10L15/14G10L15/00G10L15/18
    • G06N99/005
    • An algorithm that employs modified methods developed for optimizing differential functions but which can also handle the special non-differentiabilities that occur with the L1-regularization. The algorithm is a modification of the L-BFGS (limited-memory Broyden-Fletcher-Goldfarb-Shanno) quasi-Newton algorithm, but which can now handle the discontinuity of the gradient using a procedure that chooses a search direction at each iteration and modifies the line search procedure. The algorithm includes an iterative optimization procedure where each iteration approximately minimizes the objective over a constrained region of the space on which the objective is differentiable (in the case of L1-regularization, a given orthant), models the second-order behavior of the objective by considering the loss component alone, using a “line-search” at each iteration that projects search points back onto the chosen orthant, and determines when to stop the line search.
    • 一种使用为优化差分功能而开发的修改方法的算法,但也可以处理L1正则化发生的特殊非差异性。 该算法是L-BFGS(有限存储器Broyden-Fletcher-Goldfarb-Shanno)准牛顿算法的修改,但现在可以使用在每次迭代中选择搜索方向的过程来处理梯度的不连续性,并且修改 线搜索程序。 该算法包括一个迭代优化过程,其中每次迭代大致使目标在目标可微分的空间的约束区域(在L1正则化的情况下,给定的不对称)下的目标最小化,对目标的二阶行为进行建模 通过考虑单独的损失组件,在每次迭代时使用“线搜索”来将搜​​索点投射回所选择的不同,并确定何时停止线搜索。
    • 6. 发明申请
    • LIMITED-MEMORY QUASI-NEWTON OPTIMIZATION ALGORITHM FOR L1-REGULARIZED OBJECTIVES
    • 用于L1规范化目标的有限存储器QUASI-NEWTON优化算法
    • US20090106173A1
    • 2009-04-23
    • US11874199
    • 2007-10-17
    • Galen AndrewJianfeng Gao
    • Galen AndrewJianfeng Gao
    • G06F15/18
    • G06N99/005
    • An algorithm that employs modified methods developed for optimizing differential functions but which can also handle the special non-differentiabilities that occur with the L1-regularization. The algorithm is a modification of the L-BFGS (limited-memory Broyden-Fletcher-Goldfarb-Shanno) quasi-Newton algorithm, but which can now handle the discontinuity of the gradient using a procedure that chooses a search direction at each iteration and modifies the line search procedure. The algorithm includes an iterative optimization procedure where each iteration approximately minimizes the objective over a constrained region of the space on which the objective is differentiable (in the case of L1-regularization, a given orthant), models the second-order behavior of the objective by considering the loss component alone, using a “line-search” at each iteration that projects search points back onto the chosen orthant, and determines when to stop the line search.
    • 一种使用为优化差分功能而开发的修改方法的算法,但也可以处理L1正则化发生的特殊非差异性。 该算法是L-BFGS(有限存储器Broyden-Fletcher-Goldfarb-Shanno)准牛顿算法的修改,但现在可以使用在每次迭代中选择搜索方向的过程来处理梯度的不连续性,并且修改 线搜索程序。 该算法包括一个迭代优化过程,其中每次迭代大致使目标在目标可微分的空间的约束区域(在L1正则化的情况下,给定的不对称)下的目标最小化,对目标的二阶行为进行建模 通过考虑单独的损失组件,在每次迭代时使用“线搜索”来将搜​​索点投射回所选择的不同,并确定何时停止线搜索。