会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Sputtering device
    • 溅射装置
    • US5676803A
    • 1997-10-14
    • US786041
    • 1997-01-21
    • Richard Ernest DemarayManuel HerreraDavid E. Berkstresser
    • Richard Ernest DemarayManuel HerreraDavid E. Berkstresser
    • C23C14/34C23C14/35C23C14/56F28F3/12H01J37/32H01J37/34
    • H01J37/32458C23C14/3407C23C14/564F28F3/12H01J37/3411H01J37/3435H01J37/3497H01J2237/022
    • A target, target backing plate, and cover plate form a target plate assembly. The sputtering target assembly includes an integral cooling passage. A series of grooves are constructed in either the target backing plate or the target backing cooling cover plate, which are then securely bonded to one another. The sputtering target can be a single monolith with a target backing plate or can be securely attached to the target backing plate by one of any number of conventional bonding methods. Tantalum to titanium, titanium to titanium and aluminum to titanium, diffusion bonding can be used. The target plate assembly completely covers and seals against a top opening of a sputtering processing chamber. Cooling liquid connections are provided only from the perimeter of the target assembly. When a top vacuum chamber seals the side opposite the pressure chamber, the pressure on both sides of the target assembly is nearly equalized. Large thin target assemblies, such as large flat plates used for flat panel displays can be sputtered effectively and uniformly without adverse sputtering effects due to target deflection or cooling deficiencies. The energized target assembly is protected from adjacent components by overlapping insulators to prevent accidents and isolate the target assembly from other components. An electrical connection to the target assembly remains unconnected until a vacuum is produced in the top chamber.
    • 目标,目标背板和盖板形成目标板组件。 溅射靶组件包括一体的冷却通道。 在目标背板或目标背衬冷却盖板中构造一系列凹槽,然后它们彼此牢固地结合。 溅射靶可以是具有目标背板的单个整料,或者可以通过任何数量的常规粘合方法之一牢固地附接到目标背板。 钽到钛,钛到钛和铝到钛,可以使用扩散接合。 靶板组件完全覆盖并密封溅射处理室的顶部开口。 冷却液连接仅从目标组件的周边提供。 当顶部真空室密封与压力室相对的一侧时,目标组件两侧的压力几乎相等。 用于平板显示器的大型平板的大型薄目标组件可以有效且均匀地溅射,而不会由于目标偏转或冷却缺陷而产生不利的溅射效应。 通过重叠的绝缘体将通电的目标组件保护成相邻的部件,以防止事故发生并将目标组件与其他部件隔离。 与目标组件的电连接保持不连接,直到在顶部腔室中产生真空。
    • 2. 发明授权
    • Collimated sputtering of semiconductor and other films
    • 半导体和其他薄膜的准直溅射
    • US06362097B1
    • 2002-03-26
    • US09115258
    • 1998-07-14
    • Richard Ernest DemarayChandra DeshpandeyRajiv Gopal Pethe
    • Richard Ernest DemarayChandra DeshpandeyRajiv Gopal Pethe
    • H01L2144
    • C23C14/34H01L21/02422H01L21/02532H01L21/02579H01L21/02631H01L21/28008H01L29/66765
    • Thin semiconductor films or layers having a pre-selected degree of crystallinity, from amorphous material to poly-crystalline material, can be obtained by selecting an appropriate aspect ratio for a collimator used during a sputtering process. The orientation of the deposited film also can be tailored by selection of the collimator aspect ratio. Sputtered collimation permits highly crystalline films to be formed at temperatures significantly below the annealing temperature of the sputtered material. Thus, required fabrication steps and increase the throughput of the use of low temperatures allows films of substantially greater crystallinity and carrier mobility to be fabricated on glass and other low temperature substrates. Additionally, thin semiconductor Trapped charge defects also can be reduced by grounding the collimator to provide electrical isolation between the charged plasma particles and the substrate on which the sputtered layer is to be formed. Dielectric films having a thickness as small as several hundred Å can be formed to fabricate high transconductance devices with high breakdown strengths. improved electrically active interfaces, such as a rectifying junction between a semiconductor layer and a dielectric layer or an ohmic junction between intrinsic and doped semiconductor materials.
    • 通过选择溅射工艺中使用的准直器的合适的纵横比,可以获得从非晶材料到多晶材料具有预先选择的结晶度的薄的半导体膜或层。 沉积膜的取向也可以通过选择准直器纵横比进行调整。 溅射准直允许在显着低于溅射材料的退火温度的温度下形成高度结晶的膜。 因此,所需的制造步骤和增加使用低温的生产能力允许在玻璃和其它低温基底上制造具有更大结晶度和载流子迁移率的膜。 此外,还可以通过使准直器接地来提供薄的半导体俘获电荷缺陷,从而在被充电的等离子体粒子和其上将形成溅射层的衬底之间提供电隔离。 可以形成具有小至几百埃的厚度的介电膜,以制造具有高击穿强度的高跨导器件。 改进的电活性界面,例如半导体层和电介质层之间的整流结或本征掺杂半导体材料之间的欧姆结。
    • 3. 发明授权
    • Electrically insulating sealing structure and its method of use in a
high vacuum physical vapor deposition apparatus
    • 电绝缘密封结构及其在高真空物理气相沉积设备中的应用方法
    • US6033483A
    • 2000-03-07
    • US899685
    • 1997-07-24
    • Richard Ernest DemarayManuel J. HerreraDavid F. ElineChandra Deshpandey
    • Richard Ernest DemarayManuel J. HerreraDavid F. ElineChandra Deshpandey
    • C23C14/34C23C14/56H01J37/32C23C16/00
    • H01J37/32458C23C14/3407C23C14/564H01J37/34H01J2237/166Y10T428/24355Y10T428/31511Y10T428/31515Y10T428/31522
    • In accordance with the present invention, an insulating sealing structure useful in physical vapor deposition apparatus is provided. The insulating sealing structure is capable of functioning under high vacuum and high temperature conditions. The apparatus is a three dimensional structure having a specifically defined range of electrical, chemical, mechanical and thermal properties enabling the structure to function adequately as an insulator which does not break down at voltages ranging between about 1,500 V and about 3,000 V, which provides a seal against a vacuum of at least about 10.sup.-6 Torr, and which can function at a continuous operating temperature of about 300.degree. F. (148.9.degree. C.) or greater. The insulating sealing structure may be fabricated solely from particular polymeric materials or may comprise a center reinforcing member having at least one layer applied to its exterior surface, where the at least one surface layer provides at least a portion of the insulating properties and provides the surface finish necessary to make an adequate seal with a mating surface. A first preferred embodiment comprises an aluminum center reinforcing member having at least one layer of a polymeric insulator applied to provide an insulating, sealing surface. A second preferred embodiment comprises an anodized aluminum center reinforcing member having an inorganic insulator such as silicon oxide, silicon nitride, or aluminum nitride applied to provide the insulating, sealing surface. A third preferred embodiment comprises a graphite, silica or glass fiber-reinforced member having at least one layer of a polymeric insulator applied thereover, to provide an insulating sealing surface. A fourth preferred embodiment comprises a silicon nitride or graphic fiber-reinforced member having an inorganic, non-metallic insulating sealing surface thereover.
    • 根据本发明,提供了一种用于物理气相沉积设备的绝缘密封结构。 绝缘密封结构能够在高真空和高温条件下起作用。 该装置是具有特定范围的电气,化学,机械和热特性的三维结构,使得结构能够充分发挥作用,其绝缘体不会在约1500V至约3000V之间的电压下分解,这提供 密封至少约10 -6乇的真空,并可在约300°F(148.9℃)或更高的连续工作温度下起作用。 绝缘密封结构可以仅由特定聚合物材料制造,或者可以包括具有施加到其外表面的至少一层的中心加强构件,其中至少一个表面层提供绝缘性能的至少一部分并提供表面 完成必要的配合表面的充分密封。 第一优选实施例包括铝中心加强构件,其具有至少一层用于提供绝缘的密封表面的聚合物绝缘体层。 第二优选实施例包括阳极氧化铝中心加强件,其具有诸如氧化硅,氮化硅或氮化铝的无机绝缘体,以提供绝缘的密封表面。 第三优选实施例包括石墨,二氧化硅或玻璃纤维增​​强构件,其具有施加在其上的至少一层聚合物绝缘体,以提供绝缘密封表面。 第四优选实施例包括在其上具有无机,非金属绝缘密封表面的氮化硅或图形纤维增强构件。
    • 4. 发明授权
    • Devices and methods of protecting a cadmium sulfide for further processing
    • 保护硫化镉进一步处理的装置和方法
    • US08173482B2
    • 2012-05-08
    • US12771515
    • 2010-04-30
    • Jennifer Ann DraytonRichard Ernest Demaray
    • Jennifer Ann DraytonRichard Ernest Demaray
    • H01L31/18H01L49/02
    • C23C14/0629H01L31/073H01L31/1836Y02E10/543Y02P70/521
    • Methods for protecting a cadmium sulfide layer on a substrate are provided. The method can include sputtering a cadmium sulfide layer onto a substrate from a cadmium sulfide target at a sputtering pressure (e.g., about 10 mTorr to about 150 mTorr), and sputtering a cap layer directly on the cadmium sulfide layer. The cap layer can be sputtered directly onto the cadmium sulfide layer without breaking vacuum of the sputtering pressure. Methods are also provided for manufacturing a cadmium telluride based thin film photovoltaic device through depositing a cadmium sulfide layer on a substrate, depositing a cap layer directly on the cadmium sulfide layer, heating the substrate to sublimate at least a portion of the cap layer from the cadmium sulfide layer, and then depositing a cadmium telluride layer on the cadmium sulfide layer. An intermediate substrate for forming a cadmium telluride based thin-film photovoltaic device is also provided.
    • 提供了在基板上保护硫化镉层的方法。 该方法可以包括在溅射压力(例如约10mTorr至约150mTorr)下将硫化镉层从硫化镉靶溅射到衬底上,并且将覆盖层直接溅射在硫化镉层上。 可以将盖层直接溅射到硫化镉层上,而不会破坏溅射压力的真空。 还提供了用于通过在基底上沉积硫化镉层来制造碲化镉基薄膜光伏器件的方法,将覆盖层直接沉积在硫化镉层上,加热该衬底以使盖层的至少一部分从 硫化镉层,然后在镉硫化物层上沉积碲化镉层。 还提供了一种用于形成碲化镉基薄膜光伏器件的中间衬底。
    • 6. 发明授权
    • Automated substrate processing systems and methods
    • 自动基板处理系统和方法
    • US06205870B1
    • 2001-03-27
    • US08949207
    • 1997-10-10
    • Akihiro HosokawaRichard Ernest DemarayMakoto InagawaRavi MullapudiHarlan L. HalseyMichael T. Starr
    • Akihiro HosokawaRichard Ernest DemarayMakoto InagawaRavi MullapudiHarlan L. HalseyMichael T. Starr
    • G01N1900
    • G05B19/41815G05B19/401G05B19/402Y02P90/08
    • Automated systems and methods for processing substrates are described. An automated processing system includes: a vacuum chamber; a substrate support located inside the vacuum chamber and constructed and arranged to support a substrate during processing; and a substrate alignment detector constructed and arranged to detect if the substrate is misaligned as the substrate is transferred into the vacuum chamber based upon a change in a physical condition inside the system. The substrate alignment detector may include a vibration detector coupled to the substrate support. A substrate may be transferred into the vacuum chamber. The position of the substrate may be recorded as it is being transferred into the vacuum chamber. Misalignment of the substrate with respect to the substrate support may be detected. The substrate may be processed. The processed substrate may be unloaded from the vacuum chamber. The position of the processed substrate may be recorded as it is being unloaded from the vacuum chamber. Any substrate misalignment may be compensated for based upon the difference in the recorded substrate positions.
    • 描述了用于处理衬底的自动化系统和方法。 一种自动化处理系统包括:真空室; 位于真空室内的衬底支撑件,并被构造和布置成在加工过程中支撑衬底; 以及基板对准检测器,其构造和布置成基于系统内部的物理状态的变化来检测基板是否不对准,因为基板被转移到真空室中。 衬底对准检测器可以包括耦合到衬底支撑件的振动检测器。 衬底可以被转移到真空室中。 衬底的位置可以在被转移到真空室中时记录。 可以检测衬底相对于衬底支撑件的不对准。 可以处理衬底。 经处理的基板可以从真空室中卸载。 被处理基板的位置可以从真空室中卸载来记录。 可以基于记录的基板位置的差异来补偿任何基板未对准。
    • 7. 发明申请
    • DEVICES AND METHODS OF PROTECTING A CADMIUM SULFIDE FOR FURTHER PROCESSING
    • 保护锑硫化物进一步加工的装置和方法
    • US20110269261A1
    • 2011-11-03
    • US12771515
    • 2010-04-30
    • Jennifer Ann DraytonRichard Ernest Demaray
    • Jennifer Ann DraytonRichard Ernest Demaray
    • H01L31/18H01L49/02
    • C23C14/0629H01L31/073H01L31/1836Y02E10/543Y02P70/521
    • Methods for protecting a cadmium sulfide layer on a substrate are provided. The method can include sputtering a cadmium sulfide layer onto a substrate from a cadmium sulfide target at a sputtering pressure (e.g., about 10 mTorr to about 150 mTorr), and sputtering a cap layer directly on the cadmium sulfide layer. The cap layer can be sputtered directly onto the cadmium sulfide layer without breaking vacuum of the sputtering pressure. Methods are also provided for manufacturing a cadmium telluride based thin film photovoltaic device through depositing a cadmium sulfide layer on a substrate, depositing a cap layer directly on the cadmium sulfide layer, heating the substrate to sublimate at least a portion of the cap layer from the cadmium sulfide layer, and then depositing a cadmium telluride layer on the cadmium sulfide layer.An intermediate substrate for forming a cadmium telluride based thin-film photovoltaic device is also provided.
    • 提供了在基板上保护硫化镉层的方法。 该方法可以包括在溅射压力(例如约10mTorr至约150mTorr)下将硫化镉层从硫化镉靶溅射到衬底上,并且将覆盖层直接溅射在硫化镉层上。 可以将盖层直接溅射到硫化镉层上,而不会破坏溅射压力的真空。 还提供了用于通过在基底上沉积硫化镉层来制造碲化镉基薄膜光伏器件的方法,将覆盖层直接沉积在硫化镉层上,加热衬底以使盖层的至少一部分从 硫化镉层,然后在镉硫化物层上沉积碲化镉层。 还提供了一种用于形成碲化镉基薄膜光伏器件的中间衬底。
    • 8. 发明授权
    • Method of forming an electrically insulating sealing structure for use in a semiconductor manufacturing apparatus
    • 形成用于半导体制造装置的电绝缘密封结构的方法
    • US06821562B2
    • 2004-11-23
    • US10180436
    • 2002-06-25
    • Richard Ernest DemarayManuel J. HerreraDavid F. ElineChandra Deshpandey
    • Richard Ernest DemarayManuel J. HerreraDavid F. ElineChandra Deshpandey
    • C23C1600
    • H01J37/32458C23C14/3407C23C14/564H01J37/34H01J2237/166Y10T428/24355Y10T428/31511Y10T428/31515Y10T428/31522
    • In accordance with the present invention, an insulating sealing structure useful in physical vapor deposition apparatus is provided. The insulating sealing structure is capable of functioning under high vacuum and high temperature conditions. The apparatus is a three dimensional structure having a specifically defined range of electrical, chemical, mechanical and thermal properties enabling the structure to function adequately as an insulator which does not break down at voltages ranging between about 1,500 V and about 3,000 V, which provides a seal against a vacuum of at least about 10−6 Torr, and which can function at a continuous operating temperature of about 300° F. (148.9° C.) or greater. The insulating sealing structure may be fabricated solely from particular polymeric materials or may comprise a center reinforcing member having at least one layer applied to its exterior surface, where the at least one surface layer provides at least a portion of the insulating properties and provides the surface finish necessary to make an adequate seal with a mating surface. A first preferred embodiment comprises an aluminum center reinforcing member having at least one layer of a polymeric insulator applied to provide an insulating, sealing surface. A second preferred embodiment comprises an anodized aluminum center reinforcing member having an inorganic insulator such as silicon oxide, silicon nitride, or aluminum nitride applied to provide the insulating, sealing surface. A third preferred embodiment comprises a graphite, silica or glass fiber-reinforced member having at least one layer of a polymeric insulator applied thereover, to provide an insulating sealing surface. A fourth preferred embodiment comprises a silicon nitride or graphic fiber-reinforced member having an inorganic, non-metallic insulating sealing surface thereover.
    • 根据本发明,提供了一种用于物理气相沉积设备的绝缘密封结构。 绝缘密封结构能够在高真空和高温条件下起作用。 该装置是具有特定范围的电气,化学,机械和热特性的三维结构,使得结构能够充分发挥作用,其绝缘体不会在约1500V至约3000V之间的电压下分解,这提供 密封至少约10 -6乇的真空,并可在约300°F(148.9℃)或更高的连续工作温度下起作用。 绝缘密封结构可以仅由特定聚合物材料制造,或者可以包括具有施加到其外表面的至少一层的中心加强构件,其中至少一个表面层提供绝缘性能的至少一部分并提供表面 完成必要的配合表面的充分密封。 第一优选实施例包括铝中心加强构件,其具有至少一层用于提供绝缘的密封表面的聚合物绝缘体层。 第二优选实施例包括阳极氧化铝中心加强件,其具有诸如氧化硅,氮化硅或氮化铝的无机绝缘体,以提供绝缘的密封表面。 第三优选实施例包括石墨,二氧化硅或玻璃纤维增​​强构件,其具有施加在其上的至少一层聚合物绝缘体,以提供绝缘密封表面。 第四优选实施例包括在其上具有无机,非金属绝缘密封表面的氮化硅或图形纤维增强构件。