会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • System and process for a fusion classification for insurance underwriting suitable for use by an automated system
    • 用于融合分类的系统和过程,适用于自动化系统使用的保险承保
    • US07383239B2
    • 2008-06-03
    • US10425721
    • 2003-04-30
    • Piero Patrone BonissoneKareem Sherif AggourRajesh Venkat SubbuWeizhong YanNaresh Sundaram IyerAnindya Chakraborty
    • Piero Patrone BonissoneKareem Sherif AggourRajesh Venkat SubbuWeizhong YanNaresh Sundaram IyerAnindya Chakraborty
    • G06F17/00G06N5/02
    • G06Q40/08G06Q40/00
    • A method and system for fusing a collection of classifiers used for an automated insurance underwriting system and/or its quality assurance is described. Specifically, the outputs of a collection of classifiers are fused. The fusion of the data will typically result in some amount of consensus and some amount of conflict among the classifiers. The consensus will be measured and used to estimate a degree of confidence in the fused decisions. Based on the decision and degree of confidence of the fusion and the decision and degree of confidence of the production decision engine, a comparison module may then be used to identify cases for audit, cases for augmenting the training/test sets for re-tuning production decision engine, cases for review, or may simply trigger a record of its occurrence for tracking purposes. The fusion can compensate for the potential correlation among the classifiers. The reliability of each classifier can be represented by a static or dynamic discounting factor, which will reflect the expected accuracy of the classifier. A static discounting factor is used to represent a prior expectation about the classifier's reliability, e.g., it might be based on the average past accuracy of the model, while a dynamic discounting is used to represent a conditional assessment of the classifier's reliability, e.g., whenever a classifier bases its output on an insufficient number of points it is not reliable.
    • 描述用于融合用于自动保险承保系统的分类器集合和/或其质量保证的方法和系统。 具体来说,分类器的集合的输出被融合。 数据的融合通常会导致一些共识和分类器之间的一些冲突。 共识将被测量并用于估计融合决策的信心程度。 根据融合的决定和信心程度以及生产​​决策引擎的决策和决策程度,然后可以使用比较模块来识别审计案例,增加用于重新调整生产的培训/测试集的案例 决策引擎,审查案例,或者可以简单地触发其发生记录以进行跟踪。 融合可以补偿分类器之间的潜在相关性。 每个分类器的可靠性可以由静态或动态折扣因子表示,这将反映分类器的预期准确性。 静态折扣因子用于表示对分类器的可靠性的先前期望,例如,可以基于模型的平均过去精度,而使用动态贴现来表示分类器的可靠性的条件评估,例如,每当 分类器的输出基于不可靠的点数不足。
    • 3. 发明申请
    • SYSTEM AND PROCESS FOR A FUSION CLASSIFICATION FOR INSURANCE UNDERWRITING SUITABLE FOR USE BY AN AUTOMATED SYSTEM
    • 用于保险分类的系统和程序,适用于自动系统使用的保险
    • US20090048876A1
    • 2009-02-19
    • US12131545
    • 2008-06-02
    • Piero Patrone BonissoneKareem Sherif AGGOURRajesh Venkat SUBBUWeizhong YANNaresh Sundaram IYERAnindya CHAKRABORTY
    • Piero Patrone BonissoneKareem Sherif AGGOURRajesh Venkat SUBBUWeizhong YANNaresh Sundaram IYERAnindya CHAKRABORTY
    • G06Q40/00G06Q10/00
    • G06Q40/08G06Q40/00
    • A method and system for fusing a collection of classifiers used for an automated insurance underwriting system and/or its quality assurance is described. Specifically, the outputs of a collection of classifiers are fused. The fusion of the data will typically result in some amount of consensus and some amount of conflict among the classifiers. The consensus will be measured and used to estimate a degree of confidence in the fused decisions. Based on the decision and degree of confidence of the fusion and the decision and degree of confidence of the production decision engine, a comparison module may then be used to identify cases for audit, cases for augmenting the training/test sets for re-tuning production decision engine, cases for review, or may simply trigger a record of its occurrence for tracking purposes. The fusion can compensate for the potential correlation among the classifiers. The reliability of each classifier can be represented by a static or dynamic discounting factor, which will reflect the expected accuracy of the classifier. A static discounting factor is used to represent a prior expectation about the classifier's reliability, e.g., it might be based on the average past accuracy of the model, while a dynamic discounting is used to represent a conditional assessment of the classifier's reliability, e.g., whenever a classifier bases its output on an insufficient number of points it is not reliable.
    • 描述用于融合用于自动保险承保系统的分类器集合和/或其质量保证的方法和系统。 具体来说,分类器的集合的输出被融合。 数据的融合通常会导致一些共识和分类器之间的一些冲突。 共识将被测量并用于估计融合决策的信心程度。 根据融合的决定和信心程度以及生产​​决策引擎的决策和决策程度,然后可以使用比较模块来识别审计案例,增加用于重新调整生产的培训/测试集的案例 决策引擎,审查案例,或者可以简单地触发其发生记录以进行跟踪。 融合可以补偿分类器之间的潜在相关性。 每个分类器的可靠性可以由静态或动态折扣因子表示,这将反映分类器的预期准确性。 静态折扣因子用于表示对分类器的可靠性的先前期望,例如,可以基于模型的平均过去精度,而使用动态贴现来表示分类器的可靠性的条件评估,例如,每当 分类器的输出基于不可靠的点数不足。
    • 4. 发明授权
    • System and process for multivariate adaptive regression splines classification for insurance underwriting suitable for use by an automated system
    • 适用于自动化系统使用的保险承保的多变量自适应回归样条分类系统和过程
    • US07813945B2
    • 2010-10-12
    • US10425733
    • 2003-04-30
    • Piero Patrone BonissoneRichard Paul MessmerRajesh Venkat SubbuWeizhong YanAnindya Chakraborty
    • Piero Patrone BonissoneRichard Paul MessmerRajesh Venkat SubbuWeizhong YanAnindya Chakraborty
    • G06Q40/00
    • G06Q40/02G06Q40/08
    • A method and system for automating the decision-making process used in underwriting of insurance applications is described. While this approach is demonstrated for insurance underwriting, it is broadly applicable to diverse decision-making applications in business, commercial, and manufacturing processes. A structured methodology is used based on a multi-model parallel network of multivariate adaptive regression splines (“MARS”) models to identify the relevant set of variables and their parameters, and build a framework capable of providing automated decisions. The parameters of the MARS-based decision system are estimated from a database consisting of a set of applications with reference decisions against each. Cross-validation and development/hold-out combined with re-sampling techniques are used to build a robust set of models that minimize the error between the automated system's decision and the expert human underwriter. Furthermore, this model building methodology can be used periodically to update and maintain the family of models if required to assure currency.
    • 描述了一种自动化用于承保保险应用程序的决策过程的方法和系统。 虽然这种方法在保险承保方面得到证明,但它广泛适用于商业,商业和制造过程中的各种决策应用。 基于多变量自适应回归样条(“MARS”)模型的多模式并行网络,使用一种结构化方法来识别相关的变量及其参数集,并构建能够提供自动化决策的框架。 基于MARS的决策系统的参数是由一组数据库估算出来的,该数据库由一组应用程序组成,具有相应的参考决定。 交叉验证和开发/保留与重新采样技术相结合,用于构建一套强大的模型,以最大限度地减少自动系统决策与专家人类承保人之间的错误。 此外,如果需要确保货币,则可以定期使用此模型构建方法来更新和维护模型系列。
    • 5. 发明授权
    • System and process for a fusion classification for insurance underwriting suitable for use by an automated system
    • 用于融合分类的系统和过程,适用于自动化系统使用的保险承保
    • US08214314B2
    • 2012-07-03
    • US12131545
    • 2008-06-02
    • Piero Patrone BonissoneKareem Sherif AggourRajesh Venkat SubbuWeizhong YanNaresh Sundaram IyerAnindya Chakraborty
    • Piero Patrone BonissoneKareem Sherif AggourRajesh Venkat SubbuWeizhong YanNaresh Sundaram IyerAnindya Chakraborty
    • G06F17/00G06N5/02
    • G06Q40/08G06Q40/00
    • A method and system for fusing a collection of classifiers used for an automated insurance underwriting system and/or its quality assurance is described. Specifically, the outputs of a collection of classifiers are fused. The fusion of the data will typically result in some amount of consensus and some amount of conflict among the classifiers. The consensus will be measured and used to estimate a degree of confidence in the fused decisions. Based on the decision and degree of confidence of the fusion and the decision and degree of confidence of the production decision engine, a comparison module may then be used to identify cases for audit, cases for augmenting the training/test sets for re-tuning production decision engine, cases for review, or may simply trigger a record of its occurrence for tracking purposes. The fusion can compensate for the potential correlation among the classifiers. The reliability of each classifier can be represented by a static or dynamic discounting factor, which will reflect the expected accuracy of the classifier. A static discounting factor is used to represent a prior expectation about the classifier's reliability, e.g., it might be based on the average past accuracy of the model, while a dynamic discounting is used to represent a conditional assessment of the classifier's reliability, e.g., whenever a classifier bases its output on an insufficient number of points it is not reliable.
    • 描述用于融合用于自动保险承保系统的分类器集合和/或其质量保证的方法和系统。 具体来说,分类器的集合的输出被融合。 数据的融合通常会导致一些共识和分类器之间的一些冲突。 共识将被测量并用于估计融合决策的信心程度。 根据融合的决定和信心程度以及生产​​决策引擎的决策和决策程度,然后可以使用比较模块来识别审计案例,增加用于重新调整生产的培训/测试集的案例 决策引擎,审查案例,或者可以简单地触发其发生记录以进行跟踪。 融合可以补偿分类器之间的潜在相关性。 每个分类器的可靠性可以由静态或动态折扣因子表示,这将反映分类器的预期准确性。 静态折扣因子用于表示对分类器的可靠性的先前期望,例如,可以基于模型的平均过去精度,而使用动态贴现来表示分类器的可靠性的条件评估,例如,每当 分类器的输出基于不可靠的点数不足。