会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • Image labeling using multi-scale processing
    • 图像标注使用多尺度处理
    • US08213726B2
    • 2012-07-03
    • US12488119
    • 2009-06-19
    • Pushmeet KohliCarsten RotherVictor Lempitsky
    • Pushmeet KohliCarsten RotherVictor Lempitsky
    • G06K9/68
    • G06K9/6857G06K9/6297G06T7/143
    • Multi-scale processing may be used to reduce the memory and computational requirements of optimization algorithms for image labeling, for example, for object segmentation, 3D reconstruction, stereo correspondence, optical flow and other applications. For example, in order to label a large image (or 3D volume) a multi-scale process first solves the problem at a low resolution, obtaining a coarse labeling of an original high resolution problem. This labeling is refined by solving another optimization on a subset of the image elements. In examples, an energy function for a coarse level version of an input image is formed directly from an energy function of the input image. In examples, the subset of image elements may be selected using a measure of confidence in the labeling.
    • 可以使用多尺度处理来减少用于图像标记的优化算法的存储器和计算要求,例如用于对象分割,3D重建,立体声对应,光流等应用。 例如,为了标注大图像(或3D体积),多尺度处理首先以低分辨率解决问题,获得原始高分辨率问题的粗略标签。 通过在图像元素的子集上求解另一个优化来改进该标记。 在示例中,输入图像的粗略级版本的能量函数直接从输入图像的能量函数形成。 在示例中,图像元素的子集可以使用标签中置信度的度量来选择。
    • 4. 发明申请
    • Image Labeling Using Multi-Scale Processing
    • 使用多尺度处理的图像标记
    • US20100322525A1
    • 2010-12-23
    • US12488119
    • 2009-06-19
    • Pushmeet KohliCarsten RotherVictor Lempitsky
    • Pushmeet KohliCarsten RotherVictor Lempitsky
    • G06K9/68
    • G06K9/6857G06K9/6297G06T7/143
    • Multi-scale processing may be used to reduce the memory and computational requirements of optimization algorithms for image labeling, for example, for object segmentation, 3D reconstruction, stereo correspondence, optical flow and other applications. For example, in order to label a large image (or 3D volume) a multi-scale process first solves the problem at a low resolution, obtaining a coarse labeling of an original high resolution problem. This labeling is refined by solving another optimization on a subset of the image elements. In examples, an energy function for a coarse level version of an input image is formed directly from an energy function of the input image. In examples, the subset of image elements may be selected using a measure of confidence in the labeling.
    • 可以使用多尺度处理来减少用于图像标记的优化算法的存储器和计算要求,例如用于对象分割,3D重建,立体声对应,光流等应用。 例如,为了标注大图像(或3D体积),多尺度处理首先以低分辨率解决问题,获得原始高分辨率问题的粗略标签。 通过在图像元素的子集上求解另一个优化来改进该标记。 在示例中,输入图像的粗略级版本的能量函数直接从输入图像的能量函数形成。 在示例中,图像元素的子集可以使用标签中置信度的度量来选择。
    • 5. 发明授权
    • Surface segmentation from RGB and depth images
    • RGB和深度图像的表面分割
    • US09117281B2
    • 2015-08-25
    • US13287577
    • 2011-11-02
    • Derek HoiemPushmeet Kohli
    • Derek HoiemPushmeet Kohli
    • G06K9/00G06T7/00G06T7/60H04N13/02G06K9/46
    • G06T7/0081G06K9/00G06K9/46G06T7/00G06T7/11G06T7/50G06T2207/10024G06T2207/10028H04N13/20H04N13/239
    • Surface segmentation from RGB and depth images is described. In one example, a computer receives an image of a scene. The image has pixels which each have an associated color value and an associated depth value representing a distance between from an image sensor to a surface in the scene. The computer uses the depth values to derive a set of three-dimensional planes present within the scene. A cost function is used to determine whether each pixel belongs to one of the planes, and the image elements are labeled accordingly. The cost function has terms dependent on the depth value of a pixel, and the color values of the pixels and at least one neighboring pixel. In various examples, the planes can be extended until they intersect to determine the extent of the scene, and pixels not belonging to a plane can be labeled as objects on the surfaces.
    • 描述从RGB和深度图像的表面分割。 在一个示例中,计算机接收场景的图像。 图像具有各自具有相关联的颜色值的像素和表示从图像传感器到场景中的表面之间的距离的相关联的深度值。 计算机使用深度值来导出场景中存在的一组三维平面。 使用成本函数来确定每个像素是否属于一个平面,并且图像元素被相应地标记。 成本函数具有取决于像素的深度值以及像素和至少一个相邻像素的颜色值的项。 在各种示例中,平面可以延伸直到它们相交以确定场景的范围,并且不属于平面的像素可以被标记为表面上的对象。
    • 6. 发明授权
    • Predicting joint positions
    • 预测联合职位
    • US08571263B2
    • 2013-10-29
    • US13050858
    • 2011-03-17
    • Jamie Daniel Joseph ShottonPushmeet KohliRoss Brook GirshickAndrew FitzgibbonAntonio Criminisi
    • Jamie Daniel Joseph ShottonPushmeet KohliRoss Brook GirshickAndrew FitzgibbonAntonio Criminisi
    • G06K9/00
    • G06F3/017G06K9/00362G06N5/025
    • Predicting joint positions is described, for example, to find joint positions of humans or animals (or parts thereof) in an image to control a computer game or for other applications. In an embodiment image elements of a depth image make joint position votes so that for example, an image element depicting part of a torso may vote for a position of a neck joint, a left knee joint and a right knee joint. A random decision forest may be trained to enable image elements to vote for the positions of one or more joints and the training process may use training images of bodies with specified joint positions. In an example a joint position vote is expressed as a vector representing a distance and a direction of a joint position from an image element making the vote. The random decision forest may be trained using a mixture of objectives.
    • 例如,描述关节位置的描述是为了在图像中找到人或动物(或其部分)的联合位置,以控制计算机游戏或用于其他应用。 在一个实施例中,深度图像的图像元素进行联合位置投票,使得例如描绘躯干的一部分的图像元素可以投射颈部关节,左膝关节和右膝关节的位置。 可以对随机决策林进行训练,以使图像元素能够对一个或多个关节的位置进行投票,并且训练过程可以使用具有指定关节位置的身体的训练图像。 在一个例子中,联合立场表决被表示为表示从投票的图像元素的联合位置的距离和方向的向量。 可以使用目标混合来训练随机决策林。
    • 8. 发明申请
    • Grouping Variables for Fast Image Labeling
    • 用于快速图像标记的分组变量
    • US20120237127A1
    • 2012-09-20
    • US13046967
    • 2011-03-14
    • Pushmeet KohliSebastian Reinhard Bernhard Nowozin
    • Pushmeet KohliSebastian Reinhard Bernhard Nowozin
    • G06K9/34
    • G06K9/00624
    • This application describes grouping variables together to minimize cost or time of performing computer vision analysis techniques on images. In one instance, the pixels of an image are represented by a lattice structure of nodes that are connected to each other by edges. The nodes are grouped or merged together based in part on the energy function associated with each edge that connects the nodes together. The energy function of the edge is based in part on the energy functions associated with each node. The energy functions of the node are based on the possible states in which the node may exist. The states of the node are representative of an object, image, or any other feature or classification that may be associated with the pixels in the image.
    • 该应用程序将变量分组在一起,以最小化对图像执行计算机视觉分析技术的成本或时间。 在一个实例中,图像的像素由通过边缘彼此连接的节点的网格结构来表示。 部分地基于与将节点连接在一起的每个边缘相关联的能量函数将节点分组或合并在一起。 边缘的能量函数部分地基于与每个节点相关联的能量函数。 节点的能量函数基于可能存在节点的可能状态。 节点的状态表示可能与图像中的像素相关联的对象,图像或任何其他特征或分类。