会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Surface plasmon enhanced illumination system
    • 表面等离子体增强照明系统
    • US07318907B2
    • 2008-01-15
    • US10218928
    • 2002-08-14
    • Peter Randolph Hazard StarkDale N. Larson
    • Peter Randolph Hazard StarkDale N. Larson
    • C12Q1/68G01N15/06G01N33/00G01N33/48G01N35/00
    • A61K31/428G01N21/554G01N21/648G01Q60/22G02B21/004G02B21/0068G02B21/0072G02B21/0076G03F7/70375G03F7/70483G21K1/00G21K5/04H01J2237/3174H05H6/00Y10T29/49Y10T29/49002Y10T436/11
    • Methods and apparatus for producing small, bright nanometric light sources from apertures that are smaller than the wavelength of the emitted light. Light is directed at a surface layer of metal onto a light barrier structure that includes one or more apertures each of which directs a small spot of light onto a target. The incident light excites surface plasmons (electron density fluctuations) in the top metal surface layer and this energy couples through the apertures to the opposing surface where it is emitted as light from the apertures or from the rims of the apertures. Means are employed to prevent or severely limit the extent to which surface plasmons are induced on the surface at the aperture exit, thereby constraining the resulting emissions to small target areas. The resulting small spot illumination may be used to increase the resolution of microscopes and photolithographic processes, increase the storage capacity and performance of optical data storage systems, and analyze the properties of small objects such as protein and nucleic acid molecules and single cells.
    • 用于从小于发射光的波长的孔产生小的,明亮的纳米光源的方法和装置。 光被引导到金属的表面层到包括一个或多个孔的光阻挡结构上,每个孔将小的光点引导到目标上。 入射光激发顶部金属表面层中的表面等离子体(电子密度波动),并且该能量通过孔耦合到相对表面,在该相对表面处,其作为光从孔或光圈的边缘发射。 采用手段来防止或严重限制在孔口处的表面上诱导表面等离子体激元的程度,从而将所得到的排放物约束到小目标区域。 所得到的小斑点照明可用于增加显微镜和光刻工艺的分辨率,增加光学数据存储系统的存储容量和性能,并分析小物体如蛋白质和核酸分子和单细胞的性质。
    • 2. 发明申请
    • APPARATUS AND METHODS FOR ALIQUOTTING FROZEN SAMPLES
    • 用于冷冻冷冻样品的装置和方法
    • US20140335554A1
    • 2014-11-13
    • US13991103
    • 2011-11-17
    • Dale N. LarsonStephen L. BellioJohn Slusarz
    • Dale N. LarsonStephen L. BellioJohn Slusarz
    • G01N1/08G01N33/487
    • G01N1/08G01N1/286G01N1/42G01N33/487
    • A method of obtaining an aliquot of a frozen sample contained in a container includes moving a coring device into the sample and then withdrawing it to obtain a frozen sample core. The location from which the core is taken is selected to be at a radial position where the concentration of at least one substance of interest in the frozen sample core is representative of the overall concentration of that substance in the sample notwithstanding any concentration gradients that may exist in the frozen sample. Another method includes taking two different frozen sample cores from the same sample from radial positions selected such that the concentration of one or more substances of interest in the combined sample cores is representative of the overall concentration of said at least one substance in the sample notwithstanding any radial concentration gradients. A robotic system is programmed or hardwired to implement the methods.
    • 获得包含在容器中的冷冻样品的等分试样的方法包括将取芯装置移动到样品中,然后取出,以获得冷冻样品芯。 选择芯的位置选择在径向位置,其中冷冻样品核心中至少一种目标物质的浓度代表该样品中该物质的总浓度,尽管可能存在任何浓度梯度 在冷冻样品中。 另一种方法包括从所选择的径向位置取两个来自相同样品的不同冷冻样品核心,使得组合样品核心中一种或多种感兴趣的物质的浓度代表样品中所述至少一种物质的总浓度,尽管任何 径向浓度梯度。 机器人系统被编程或硬连线以实现这些方法。
    • 4. 发明授权
    • Ultra-sensitive temperature sensing and calorimetry
    • 超敏感温度检测和量热法
    • US08076151B2
    • 2011-12-13
    • US12448836
    • 2008-01-16
    • Dale N. LarsonGregory Kowalski
    • Dale N. LarsonGregory Kowalski
    • G01N25/20G01N25/00
    • G01K17/00G01N25/48
    • Methods and apparatus for ultra-sensitive temperature sensing and calorimetry. Radiation is directed at a thin electrically conductive film having one or more small apertures. The incident radiation excites surface plasmons on a first surface of the electrically conductive film, and energy associated with the surface plasmons couples to an opposite surface of the electrically conductive film, where surface plasmon-enhanced radiation (SPER) is emitted from the aperture(s). A temperature-sensitive fluid or solid dielectric material is disposed contiguous with at least a portion of the electrically conductive film, such that a temperature change in the dielectric material alters a resonance condition for the SPER. Measurable changes in the SPER due to altered resonance conditions provide for an ultrasensitive temperature sensor that can detect small temperature changes in the dielectric material. The disclosed methods and apparatus may be used for a variety of applications including, but not limited to, nanoscale to microscale calorimetry for pharmaceutical and biotechnology products, combustion sensing, explosive detection, and biotoxin monitoring.
    • 用于超敏感温度测量和量热法的方法和设备。 辐射指向具有一个或多个小孔的薄导电膜。 入射辐射激励导电膜的第一表面上的表面等离子体激元,并且与表面等离子体激元相关联的能量耦合到导电膜的相对表面,其中表面等离子体增强辐射(SPER)从孔径 )。 温度敏感流体或固体电介质材料设置成与导电膜的至少一部分相邻,使得电介质材料的温度变化改变SPER的共振条件。 由于改变的共振条件,SPER中的可测量变化提供了一种可以检测电介质材料中较小温度变化的超敏感温度传感器。 所公开的方法和装置可以用于各种应用,包括但不限于用于药物和生物技术产品的纳米尺度至微量测量学,燃烧感测,爆炸性检测和生物毒素监测。
    • 5. 发明申请
    • ULTRA-SENSITIVE TEMPERATURE SENSING AND CALORIMETRY
    • 超声波温度传感和压力测定
    • US20100120163A1
    • 2010-05-13
    • US12448836
    • 2008-01-16
    • Dale N. LarsonGregory Kowalski
    • Dale N. LarsonGregory Kowalski
    • G01N25/20
    • G01K17/00G01N25/48
    • Methods and apparatus for ultra-sensitive temperature sensing and calorimetry. Radiation is directed at a thin electrically conductive film having one or more small apertures. The incident radiation excites surface plasmons on a first surface of the electrically conductive film, and energy associated with the surface plasmons couples to an opposite surface of the electrically conductive film, where surface plasmon-enhanced radiation (SPER) is emitted from the aperture(s). A temperature-sensitive fluid or solid dielectric material is disposed contiguous with at least a portion of the electrically conductive film, such that a temperature change in the dielectric material alters a resonance condition for the SPER. Measureable changes in the SPER due to altered resonance conditions provide for an ultrasensitive temperature sensor that can detect small temperature changes in the dielectric material. The disclosed methods and apparatus may be used for a variety of applications including, but not limited to, nanoscale to microscale calorimetry for pharmaceutical and biotechnology products, combustion sensing, explosive detection, and biotoxin monitoring.
    • 用于超敏感温度测量和量热法的方法和设备。 辐射指向具有一个或多个小孔的薄导电膜。 入射辐射激励导电膜的第一表面上的表面等离子体激元,并且与表面等离子体激元相关联的能量耦合到导电膜的相对表面,其中表面等离子体增强辐射(SPER)从孔径 )。 温度敏感流体或固体电介质材料设置成与导电膜的至少一部分相邻,使得电介质材料的温度变化改变SPER的共振条件。 由于共振条件的改变,SPER的可测量变化提供了可以检测电介质材料中较小温度变化的超敏感温度传感器。 所公开的方法和装置可以用于各种应用,包括但不限于用于药物和生物技术产品的纳米尺度至微量测量学,燃烧感测,爆炸性检测和生物毒素监测。