会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Vernier photonic sensor data-analysis
    • 游标光子传感器数据分析
    • US09068950B2
    • 2015-06-30
    • US13271875
    • 2011-10-12
    • Peter BienstmanTom ClaesWim Bogaerts
    • Peter BienstmanTom ClaesWim Bogaerts
    • G01N21/41G01N21/77
    • G01N21/7746G01N21/41
    • Quantifying a refractive index of a test medium by obtaining spectral data representative for an optical signal being modulated with an optical transfer characteristics of a photonic sensor, the modulation being obtained by combining modulation of a first electromagnetic wave component in an optical filter element with a first periodic transfer spectrum having a first free spectral range and modulation of a second electromagnetic wave component in an optical filter element with a second periodic transfer spectrum having a second free spectral range being different from the first free spectral range. A relative is change induced in the second periodic transfer spectrum by bringing the test medium in proximity with the optical filter element with the second periodic transfer spectrum. The refractive index of the test medium is quantified by determining a wavelength offset of an envelope signal in said spectral data.
    • 通过获得表示用光子传感器的光学传递特性调制的光信号的光谱数据来量化测试介质的折射率,所述调制是通过将光学滤波器元件中的第一电磁波分量的调制与第一 具有第一自由光谱范围的周期性传输光谱和具有第二自由光谱范围与第一自由光谱范围不同的第二周期性传输光谱的滤光器元件中的第二电磁波分量的调制。 相对是通过使测试介质与具有第二周期性传输频谱的滤光器元件接近而在第二周期性传输频谱中引起的变化。 通过确定所述光谱数据中的包络信号的波长偏移来量化测试介质的折射率。
    • 3. 发明授权
    • Retro-reflective structures
    • 反光结构
    • US08620120B2
    • 2013-12-31
    • US13000825
    • 2009-06-23
    • Roel BaetsWim BogaertsKatrien De VosStijn Scheerlinck
    • Roel BaetsWim BogaertsKatrien De VosStijn Scheerlinck
    • G02B6/26
    • G02B6/34G01D5/268G02B6/02061G02B6/12007G02B6/29338G02B6/30G02B6/4204G02B2006/12107Y10T29/49002
    • A photonic integrated circuit (410) is described comprising at least one signal processing circuit (110). The signal processing circuit (110) comprises at least one input coupling element (120) for coupling incident light from a predetermined incoupling direction into the photonic integrated circuit (410), and at least one output coupling element (130) for coupling light out of the photonic integrated circuit (410) into an outcoupling direction. The relation between the incoupling direction and the outcoupling direction is different from a relation according to the law of reflection and the incoupling direction and the outcoupling direction are substantially the same. Furthermore, an optical sensor probe (400) comprising such a photonic integrated circuit (410) is disclosed. In some embodiments, the optical sensor probe (400) comprises an optical fiber (420) having a first facet and comprises a sensing element physically attached to the first facet, wherein the sensing element comprises said photonic integrated circuit (410).
    • 描述了包括至少一个信号处理电路(110)的光子集成电路(410)。 信号处理电路(110)包括至少一个输入耦合元件(120),用于将来自预定的耦合方向的入射光耦合到光子集成电路(410)中;以及至少一个输出耦合元件(130),用于将光从 所述光子集成电路(410)进入外耦合方向。 耦合方向与外耦合方向之间的关系不同于根据反射定律的关系,并且耦合方向和外耦合方向基本相同。 此外,公开了一种包括这种光子集成电路(410)的光学传感器探针(400)。 在一些实施例中,光学传感器探针(400)包括具有第一小面的光纤(420),并且包括物理地连接到第一小面的感测元件,其中感测元件包括所述光子集成电路(410)。
    • 4. 发明申请
    • Retro-Reflective Structures
    • 复古反光结构
    • US20110116735A1
    • 2011-05-19
    • US13000825
    • 2009-06-23
    • Roel BaetsWim BogaertsKatrien De VosStijn Scheerlinck
    • Roel BaetsWim BogaertsKatrien De VosStijn Scheerlinck
    • G02B6/00G02B6/42H05K13/00
    • G02B6/34G01D5/268G02B6/02061G02B6/12007G02B6/29338G02B6/30G02B6/4204G02B2006/12107Y10T29/49002
    • A photonic integrated circuit (410) is described comprising at least one signal processing circuit (110). The signal processing circuit (110) comprises at least one input coupling element (120) for coupling incident light from a predetermined incoupling direction into the photonic integrated circuit (410), and at least one output coupling element (130) for coupling light out of the photonic integrated circuit (410) into an outcoupling direction. The relation between the incoupling direction and the outcoupling direction is different from a relation according to the law of reflection and the incoupling direction and the outcoupling direction are substantially the same. Furthermore, an optical sensor probe (400) comprising such a photonic integrated circuit (410) is disclosed. In some embodiments, the optical sensor probe (400) comprises an optical fiber (420) having a first facet and comprises a sensing element physically attached to the first facet, wherein the sensing element comprises said photonic integrated circuit (410).
    • 描述了包括至少一个信号处理电路(110)的光子集成电路(410)。 信号处理电路(110)包括至少一个输入耦合元件(120),用于将来自预定的耦合方向的入射光耦合到光子集成电路(410)中;以及至少一个输出耦合元件(130),用于将光从 所述光子集成电路(410)进入外耦合方向。 耦合方向与外耦合方向之间的关系不同于根据反射定律的关系,并且耦合方向和外耦合方向基本相同。 此外,公开了一种包括这种光子集成电路(410)的光学传感器探针(400)。 在一些实施例中,光学传感器探针(400)包括具有第一小面的光纤(420),并且包括物理地连接到第一小面的感测元件,其中感测元件包括所述光子集成电路(410)。
    • 5. 发明授权
    • Co-integration of photonic devices on a silicon photonics platform
    • 光子器件在硅光子平台上的协整
    • US08741684B2
    • 2014-06-03
    • US13466766
    • 2012-05-08
    • Wim BogaertsJoris Van CampenhoutPeter VerheyenPhilippe Absil
    • Wim BogaertsJoris Van CampenhoutPeter VerheyenPhilippe Absil
    • H01L31/18H01L31/0352H01L31/12
    • G02B6/12004H01L31/105
    • Disclosed are methods for co-integration of active and passive photonic devices on a planarized silicon-based photonics substrate. In one aspect, a method is disclosed that includes providing a planarized silicon-based photonics substrate comprising a silicon waveguide structure, depositing a dielectric layer over the planarized silicon-based photonics substrate, selectively etching the dielectric layer, thereby exposing at least a portion of the silicon waveguide structure, selectively etching the exposed portion of the silicon waveguide structure to form a template, using the silicon waveguide structure as a seed layer to selectively grow in the template a germanium layer that extends above the dielectric layer, and planarizing the germanium layer to form a planarized germanium layer, wherein the planarized germanium layer does not extend above the dielectric layer.
    • 公开了用于在平坦化的硅基光子学衬底上共同整合有源和无源光子器件的方法。 在一个方面,公开了一种方法,其包括提供包括硅波导结构的平坦化硅基光子学衬底,在平坦化的硅基光子衬底上沉积介电层,选择性地蚀刻介电层,从而暴露出至少一部分 所述硅波导结构选择性地蚀刻所述硅波导结构的暴露部分以形成模板,使用所述硅波导结构作为晶种层,以在所述模板中选择性地在所述介电层上延伸的锗层生长,并且平坦化所述锗层 以形成平坦化的锗层,其中平坦化的锗层不延伸在电介质层的上方。
    • 6. 发明申请
    • Co-Integration of Photonic Devices on a Silicon Photonics Platform
    • 光子器件在硅光子平台上的一体化
    • US20120288971A1
    • 2012-11-15
    • US13466766
    • 2012-05-08
    • Wim BogaertsJoris Van CampenhoutPeter VerheyenPhilippe Absil
    • Wim BogaertsJoris Van CampenhoutPeter VerheyenPhilippe Absil
    • H01L31/028H01L33/02
    • G02B6/12004H01L31/105
    • Disclosed are methods for co-integration of active and passive photonic devices on a planarized silicon-based photonics substrate. In one aspect, a method is disclosed that includes providing a planarized silicon-based photonics substrate comprising a silicon waveguide structure, depositing a dielectric layer over the planarized silicon-based photonics substrate, selectively etching the dielectric layer, thereby exposing at least a portion of the silicon waveguide structure, selectively etching the exposed portion of the silicon waveguide structure to form a template, using the silicon waveguide structure as a seed layer to selectively grow in the template a germanium layer that extends above the dielectric layer, and planarizing the germanium layer to form a planarized germanium layer, wherein the planarized germanium layer does not extend above the dielectric layer.
    • 公开了用于在平坦化的硅基光子学衬底上共同整合有源和无源光子器件的方法。 在一个方面,公开了一种方法,其包括提供包括硅波导结构的平坦化硅基光子学衬底,在平坦化的硅基光子衬底上沉积介电层,选择性地蚀刻介电层,从而暴露出至少一部分 所述硅波导结构选择性地蚀刻所述硅波导结构的暴露部分以形成模板,使用所述硅波导结构作为晶种层,以在所述模板中选择性地在所述介电层上延伸的锗层生长,并且平坦化所述锗层 以形成平坦化的锗层,其中平坦化的锗层不延伸在电介质层的上方。