会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • High energy storage lasers employing perovskites containing rare earths
    • 采用含有稀土的钙钛矿的高储能激光器
    • US3949319A
    • 1976-04-06
    • US505206
    • 1974-09-12
    • Bruce Cedric TofieldHeinz Paul Weber
    • Bruce Cedric TofieldHeinz Paul Weber
    • H01S3/094H01S3/16
    • H01S3/1688H01S3/094
    • New lasers employ a halide crystal including alkali metals and rare earths with a very high concentration of the active ions that are arranged to have largest possible separation between themselves. Such laser crystals provide very high energy storage that is finally released in the form of optical radiation. The high energy storage is attributable to a relatively low gain per unit length. The halide crystal is of the perovskite type and typically includes two alkali metals, one of which, for example, sodium, has a much smaller ionic charge than the rare earths and, therefore, will be ordered on the octahedral sites of the perovskite crystal with respect to the rare earth atoms. The stoichiometry of the materials facilitates the high concentration of the rare earth active ions; and the ordering or strict sequencing of alkali and rare earth ions facilitates the large separation of the rare earth active ions which is necessary to minimize non-radiative decay via rare earth pair interaction. If other rare earths are employed other than the active ion, they can serve as diluents or energy transferring elements but are typically not ordered with respect to the active ions, even though on the octahedral sites, unless they are sufficiently different in size from the active ion. In addition, transition metal ions such as chromium can be included and will appear on the octahedral sites and serve to transfer energy to the active ion. When erbium (Er), ytterbium (Yb) or thulium (Tm) are included in suitable combinations, energy conversion of the emission from the infrared to the visible can be obtained. A typical crystal is dicesium sodium neodymium hexachloride (Cs.sub.2 NaNdCl.sub.6), in which Nd.sup.3.sup.+ is the active ion. It is likely that the alkali metals may be replaced by other monovalent ions such as thallium (T1.sup.+), (Cu.sup.+), and silver (Ag.sup.+).
    • 新的激光器使用包含碱金属和稀土的卤化物晶体,其中非常高浓度的活性离子被排列成在它们之间具有最大可能的分离。 这种激光晶体提供非常高的能量存储,最终以光学辐射的形式释放。 高能量存储可归因于每单位长度的相对较低的增益。 卤化物晶体为钙钛矿型,通常包括两种碱金属,其中一种例如钠,具有比稀土离子电荷小得多的离子电荷,因此将被排列在钙钛矿晶体的八面体位置上, 尊重稀土原子。 材料的化学计量有利于高浓度的稀土活性离子; 并且碱和稀土离子的排序或严格排序促进稀土活性离子的大分离,这是通过稀土配对相互作用使非辐射衰减最小化所必需的。 如果使用除活性离子以外的其他稀土,它们可以用作稀释剂或能量转移元件,但是对于活性离子通常不是有序的,即使在八面体位置上,除非它们与活性离子的尺寸有足够的不同 离子。 此外,可以包括过渡金属离子如铬,并将出现在八面体位置上,并用于将能量转移到活性离子。 当合适的组合包含铒(Er),镱(Yb)或ium(Tm)时,可以获得从红外到可见光的发射的能量转换。 典型的晶体是六水合镨六钠(Cs2NaNdCl6),其中Nd3 +是活性离子。 碱金属可能被诸如铊(T1 +),(Cu +)和银(Ag +)的其它一价离子代替。