会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明授权
    • In-situ pre-metallization clean and metallization of semiconductor wafers
    • 半导体晶片的原位预金属化清洁和金属化
    • US6132564A
    • 2000-10-17
    • US971512
    • 1997-11-17
    • Thomas J. Licata
    • Thomas J. Licata
    • C23C14/02C23C16/02H01L21/285H01L21/302H01L21/3065C23C14/34
    • C23C14/022H01L21/28556
    • A method is provided of cleaning device surfaces for the metallization thereof by treating the surfaces in a chamber equipped for ionized physical vapor deposition or other plasma-based metal deposition process. The surfaces are plasma etched, preferably in a chamber in which the next metal layer is to be deposited onto the surfaces. Also or in the alternative, the surfaces are plasma etched with a plasma containing ions of the metal to be deposited. Preferably also, the etching process is followed by depositing a film of the metal, preferably by ionized physical vapor deposition, in the chamber. The metal may, for example, be titanium that is sputtered from a target within the chamber. The process of depositing the metal, where the metal is titanium, may, for example, be followed by the deposition of a titanium nitride layer. The process steps may be used to passivate the surfaces for transfer of the substrate containing the device surfaces through an oxygen or water vapor containing atmosphere or through another atmosphere containing potential contaminants such as through the transfer chamber of a cluster tool to which are connected CVD or other chemical processing modules. In the preferred embodiment, etching is achieved by maintaining a high ion fraction and high bombardment energy, for example, by applying a high negative bias to the substrate, operating the plasma in a net etching mode, then, by lowering the bombardment energy, for example by lowering the bias voltage, or by lowering the ion fraction, such as by increasing sputtering power, or decreasing plasma power, chamber pressure, a net deposition of the metal by IPVD is brought about.
    • 提供了一种通过处理在用于离子化物理气相沉积或其它等离子体金属沉积工艺的室内的表面进行金属化的清洁装置表面的方法。 表面被等离子体蚀刻,优选在其中将下一个金属层沉积到表面上的腔室中。 此外或在替代方案中,用包含待沉积金属的离子的等离子体等离子体蚀刻表面。 优选地,蚀刻工艺之后是将优选通过电离物理气相沉积的金属膜沉积在腔室中。 金属可以是例如从室内的靶溅射的钛。 沉积金属(其中金属是钛)的过程例如可以是沉积氮化钛层。 处理步骤可以用于钝化表面,以便将含有装置表面的基板通过含氧气体或水蒸汽的气氛或通过另外的气氛,其中包含潜在的污染物,例如通过连接到CVD或其上的簇工具的传送室 其他化学处理模块。 在优选实施例中,通过保持高离子分数和高轰击能量来实现蚀刻,例如通过向基板施加高负偏压,以净蚀刻模式操作等离子体,然后通过降低轰击能量来获得 例如通过降低偏置电压,或者通过降低离子分数,例如通过增加溅射功率,或降低等离子体功率,室压力,产生通过IPVD的金属的净沉积。
    • 7. 发明授权
    • Method and apparatus for ionized physical vapor deposition
    • 电离物理气相沉积的方法和装置
    • US6080287A
    • 2000-06-27
    • US73141
    • 1998-05-06
    • John S. DreweryThomas J. Licata
    • John S. DreweryThomas J. Licata
    • C23C14/32C23C14/34C23C14/35H01J37/32H01J37/34H01L21/203H01L21/285
    • C23C14/345C23C14/35C23C14/358H01J37/321H01J37/32477H01J37/3408H01J37/3429
    • Ionized physical vapor deposition (IPVD) is provided by a method of apparatus for sputtering conductive metal coating material from an annular magnetron sputtering target. The sputtered material is ionized in a processing space between the target and a substrate by generating a dense plasma in the space with energy coupled from a coil located outside of the vacuum chamber behind a dielectric window in the chamber wall at the center of the opening in the sputtering target. Faraday type shields physically shield the window to prevent coating material from coating the window, while allowing the inductive coupling of energy from the coil into the processing space. The location of the coil in the plane of the target or behind the target allows the target to wafer spacing to be chosen to optimize film deposition rate and uniformity, and also provides for the advantages of a ring-shaped source without the problems associated with unwanted deposition in the opening at the target center.
    • 电离物理气相沉积(IPVD)是通过一种用于从环形磁控溅射靶溅射导电金属涂层材料的设备的方法提供的。 溅射的材料在目标和基板之间的处理空间中被离子化,通过在空间中产生致密的等离子体,其能量从位于真空室外面的线圈耦合到位于开口中心的室壁中的电介质窗口之后 溅射靶。 法拉第型屏蔽物理屏蔽窗户,防止涂料涂覆窗户,同时允许将线圈的能量感应耦合到处理空间。 线圈在目标平面中或靶子后面的位置允许选择目标晶片间距以优化膜沉积速率和均匀性,并且还提供环形源的优点,而没有与不期望的相关联的问题 沉积在目标中心的开口处。
    • 8. 发明授权
    • Apparatus for ionized sputtering
    • 电离溅射装置
    • US5800688A
    • 1998-09-01
    • US837551
    • 1997-04-21
    • Alexander D. LantsmanThomas J. Licata
    • Alexander D. LantsmanThomas J. Licata
    • H01J37/32H01J37/34C23C14/34
    • H01J37/321H01J37/32623H01J37/3408H01J2237/022
    • An ionized physical vapor deposition apparatus is provided with a helical RF coil that surrounds the chamber wall opposite a space between a target and a substrate holder. The coil is behind a quartz window in the wall of the chamber, which protects the coil from adverse interaction with plasma. The coil is energized with RF energy, preferably in the 0.1 to 60 MHz range, to form a secondary plasma in a volume of the space between the substrate holder and the main plasma that is adjacent the target. A shield between the space and the dielectric material prevents coating from forming on the window. The shield is formed of a plurality of angled sections that are spaced to facilitate communication of a secondary RF plasma from adjacent the window to the volume of the chamber where the sputtered material is ionized, with the sections angled and spaced to shadow at least most of the target from the window. In one embodiment, a plurality of axially spaced frusto-conical sections are used, with axial gaps to interrupt current eddy paths around the chamber. In another embodiment, the sections are in the form of a plurality angled axially extending circumferentially spaced blades. The shields may be commonly or separately biased to control contamination and to optimize the uniformity of coating on the substrate and the directionality of the flux of ionized material at the substrate.
    • 电离物理气相沉积装置设置有螺旋RF线圈,该螺旋RF线圈围绕与靶和衬底保持器之间的空间相对的腔室壁。 线圈位于腔室壁上的石英窗后面,保护线圈免受与等离子体的不利影响。 线圈通过RF能量通电,优选地在0.1至60MHz的范围内,以在衬底保持器和与靶子相邻的主等离子体之间的空间的体积中形成二次等离子体。 空间和电介质材料之间的屏蔽物防止了在窗户上形成涂层。 屏蔽由多个成角度的部分形成,这些部分间隔开以促进辅助RF等离子体从邻近窗口到溅射材料离子化的室的体积,其中部分成角度和间隔以至少大部分 目标从窗口。 在一个实施例中,使用多个轴向隔开的截头圆锥形部分,具有轴向间隙以中断室周围的当前涡流路径。 在另一个实施例中,这些部分是多个成角度的轴向延伸的周向间隔开的叶片的形式。 屏蔽可以通常地或单独地偏置以控制污染并优化衬底上的涂层的均匀性以及离子化材料在衬底处的通量的方向性。