会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Communications link time transfer to improve navigation system accuracy
    • 通信链路时间传输,提高导航系统的准确性
    • US07679554B1
    • 2010-03-16
    • US12167897
    • 2008-07-03
    • Patrick Y HwangBernard A. SchnauferDavid A. AndersonGary A. McGraw
    • Patrick Y HwangBernard A. SchnauferDavid A. AndersonGary A. McGraw
    • G01S5/14G01S1/00
    • G01S19/15G01S19/235G01S19/41
    • A method and apparatus for improving differential navigation accuracy uses time transfer over a two-way communications link. The communications link transmits an overall time offset between a differential reference station and a remote user. A differential navigation position solution is modified at the remote user with the overall time offset to improve the differential navigation accuracy. A first time offset between a first communications device and a first navigation receiver at the remote user is determined. A second time offset between the first communications device at the remote user and a second communications device at the differential reference station is determined. A third time offset between the second communications device and a second navigation receiver at the differential reference station is determined. An overall time offset from the first time offset, the second time offset, and the third time offset is computed and used to improve the differential navigation accuracy.
    • 用于改善差分导航精度的方法和装置使用双向通信链路上的时间传递。 通信链路传输差分参考站和远程用户之间的整体时间偏移。 差分导航位置解决方案在远程用户处被修改,具有总时间偏移量,以提高差分导航精度。 确定远程用户的第一通信设备和第一导航接收器之间的第一时间偏移。 确定远程用户的第一通信设备与差分参考站处的第二通信设备之间的第二时间偏移。 确定第二通信设备和差分参考站处的第二导航接收机之间的第三次偏移。 计算出与第一时间偏移,第二时间偏移和第三时间偏移的总体时间偏移,并用于提高差分导航精度。
    • 2. 发明授权
    • Communication link time transfer to improve navigation system accuracy
    • 通信链路时间传输,提高导航系统的准确性
    • US07405694B1
    • 2008-07-29
    • US11368782
    • 2006-03-06
    • Patrick Y. HwangBernard A. SchnauferDavid A. AndersonGary A. McGraw
    • Patrick Y. HwangBernard A. SchnauferDavid A. AndersonGary A. McGraw
    • G01S1/00H04B7/185H04Q7/20
    • G01S19/15G01S19/235G01S19/41
    • A method and apparatus for improving differential navigation accuracy uses time transfer over a two-way communications link. The communications link transmits an overall time offset between a differential reference station and a remote user. A differential navigation position solution is modified at the remote user with the overall time offset to improve the differential navigation accuracy. A first time offset between a first communications device and a first navigation receiver at the remote user is determined. A second time offset between the first communications device at the remote user and a second communications device at the differential reference station is determined. A third time offset between the second communications device and a second navigation receiver at the differential reference station is determined. An overall time offset from the first time offset, the second time offset, and the third time offset is computed and used to improve the differential navigation accuracy.
    • 用于改善差分导航精度的方法和装置使用双向通信链路上的时间传递。 通信链路传输差分参考站和远程用户之间的整体时间偏移。 差分导航位置解决方案在远程用户处被修改,具有总时间偏移量,以提高差分导航精度。 确定远程用户的第一通信设备和第一导航接收器之间的第一时间偏移。 确定远程用户的第一通信设备与差分参考站处的第二通信设备之间的第二时间偏移。 确定第二通信设备和差分参考站处的第二导航接收机之间的第三次偏移。 计算出与第一时间偏移,第二时间偏移和第三时间偏移的总体时间偏移,并用于提高差分导航精度。
    • 5. 发明授权
    • Collaborative positioning, navigation and timing
    • 协调定位,导航和定时
    • US08880001B1
    • 2014-11-04
    • US13086535
    • 2011-04-14
    • Patrick Y. HwangGary A. McGraw
    • Patrick Y. HwangGary A. McGraw
    • H04B17/00H04M11/04H04W4/00
    • G01S19/43G01S7/40G01S13/003G01S13/90G01S19/14H04W4/029
    • A method for providing collaborative PNT for a plurality of nodes in a distributed sensing system is disclosed. The method may include receiving carrier phase and pseudorange measurements from a first node and a second node of the plurality of nodes; providing a process model for each node, where the process model for each node is configured for modeling error characteristics associated with that node; determining an error covariance between the first node and the second node; and estimating a PNT solution for the first node and a PNT solution for the second node based on: the carrier phase and pseudorange measurements received from the first node, the carrier phase and pseudorange measurements received from the second node, the process model for the first node, the process model for the second node, and the error covariance between the first node and the second node.
    • 公开了一种在分布式感测系统中为多个节点提供协同PNT的方法。 该方法可以包括从多个节点中的第一节点和第二节点接收载波相位和伪距测量值; 为每个节点提供过程模型,其中每个节点的过程模型被配置用于与该节点相关联的建模误差特征; 确定所述第一节点和所述第二节点之间的误差协方差; 以及基于:从第一节点接收的载波相位和伪距测量,从第二节点接收到的载波相位和伪距测量,估计第一节点的PNT解和用于第二节点的PNT解,第一节点的处理模型 节点,第二节点的过程模型以及第一节点和第二节点之间的误差协方差。
    • 6. 发明授权
    • Coordinated sensing and precision geolocation of target emitter
    • 目标发射器的协调感测和精确地理定位
    • US08193981B1
    • 2012-06-05
    • US12284937
    • 2008-09-26
    • Patrick Y. HwangGary A. McGrawRobert J. Frank
    • Patrick Y. HwangGary A. McGrawRobert J. Frank
    • G01S19/24
    • G01S5/06G01S19/43G01S19/51
    • The present invention is a geolocation system for providing coordinated sensing and precision geolocation of a target emitter. The system may include a Quint Networking Technology (QNT) subsystem which may be configured receiving, detecting and identifying a target emitter signal. The QNT subsystem may be further configured for extracting a carrier phase of the signal. The system may further include a Real Time Kinematic Global Positioning System (RTK GPS) subsystem for determining a position of the geolocation system relative to a position of a second geolocation system. Further, the system may be configured for communicating with the second geolocation system via a QNT communication data link for: determining a QNT time difference via signal carrier phase differencing for calculating a time difference between the geolocation systems and geolocating the target emitter based on both the relative position information of the geolocation systems and the calculated time difference between the geolocation systems.
    • 本发明是用于提供目标发射器的协调感测和精确地理定位的地理定位系统。 该系统可以包括可配置为接收,检测和识别目标发射器信号的Quint网络技术(QNT)子系统。 QNT子系统可以被进一步配置用于提取信号的载波相位。 系统还可以包括用于确定地理位置系统相对于第二地理定位系统的位置的位置的实时运动全球定位系统(RTK GPS)子系统。 此外,该系统可以被配置为经由QNT通信数据链路与第二地理定位系统进行通信,用于:经由信号载波相位差来确定QNT时间差,用于基于两者来计算地理位置系统和地理定位目标发射器之间的时间差 地理定位系统的相对位置信息以及地理位置系统之间的计算时间差。
    • 7. 发明授权
    • Synthetic pressure altitude determining system and method of integrity monitoring from a pressure sensor
    • 合成压力高度确定系统和来自压力传感器的完整性监测方法
    • US06757624B1
    • 2004-06-29
    • US10308621
    • 2002-12-03
    • Patrick Y. HwangGary A. McGraw
    • Patrick Y. HwangGary A. McGraw
    • G01L700
    • G01L19/02
    • A method of generating a synthetic pressure altitude is disclosed. The method includes providing a static air temperature to a data processing device. The method also includes receiving a geometric altitude from a geometric altitude sensing device and performing a numerical integration based on the static air temperature and the geometric altitude resulting in a synthetic pressure altitude. The method further includes receiving a pressure altitude from a pressure altitude sensing device, comparing the pressure altitude and the synthetic pressure altitude and generating an average of the pressure altitude and the synthetic pressure altitude. The method still further includes providing selectively, based on the comparing step, the average as output.
    • 公开了一种产生合成压力高度的方法。 该方法包括向数据处理装置提供静态空气温度。 该方法还包括从几何高度感测装置接收几何高度,并且基于静态空气温度和导致合成压力高度的几何高度执行数值积分。 该方法还包括从压力高度感测装置接收压力高度,比较压力高度和合成压力高度,并产生压力高度和合成压力高度的平均值。 该方法还包括基于比较步骤选择性地提供平均值作为输出。
    • 10. 发明授权
    • Generalized divergence-free carrier smoothing and dual frequency differential GPS architecture implementing the same
    • 广义无差分载波平滑和双频差分GPS架构实现相同
    • US07570204B1
    • 2009-08-04
    • US11513454
    • 2006-08-31
    • Gary A. McGraw
    • Gary A. McGraw
    • G01S5/14
    • G01S19/32G01S19/44
    • A method of generating differentially-corrected smoothed pseudorange data in a differential global positioning system (DGPS) includes generating, at a base station, non-mode specific pseudorange and carrier phase correction data. The non-mode specific pseudorange and carrier phase correction data is then provided to a remote receiver. At the remote receiver, one of a plurality of specific smoothing modes of operation is selected for use in generating differentially-corrected smoothed pseudorange and carrier phase data. The differentially-corrected smoothed pseudorange and carrier phase data is then generated by the remote receiver using the selected one of the plurality of specific smoothing modes of operation, and as a function of the non-mode specific pseudorange and carrier phase correction data received from the base station.
    • 在差分全球定位系统(DGPS)中产生差分校正的平滑伪距数据的方法包括在基站处生成非模式特定伪距和载波相位校正数据。 然后将非模式特定伪距和载波相位校正数据提供给远程接收机。 在远程接收机处,选择多个特定平滑操作模式之一用于生成差分校正的平滑伪距和载波相位数据。 差分校正的平滑伪距和载波相位数据然后由远程接收机使用所选择的多个特定平滑操作模式中的一个产生,并且作为根据从该接收机接收的非模式特定伪距和载波相位校正数据的函数 基站。