会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • Ink warping for normalization and beautification / ink beautification
    • 油墨翘曲正常化和美化/油墨美化
    • US20070003142A1
    • 2007-01-04
    • US11173243
    • 2005-07-01
    • Patrice SimardManeesh AgrawalaDavid Steinkraus
    • Patrice SimardManeesh AgrawalaDavid Steinkraus
    • G06K9/00
    • G06K9/00416
    • Systems and methods are disclosed that facilitate normalizing and beautifying digitally generated handwriting, such as can be generated on a tablet PC or via scanning a handwritten document. A classifier can identify extrema in the digital handwriting and label such extrema according to predefined categories (e.g., bottom, baseline, midline, top, other, . . . ). Multi-linear regression, polynomial regression, etc., can be performed to align labeled extrema to respective and corresponding desired points as indicated by the labels. Additionally, displacement techniques can be applied to the regressed handwriting to optimize legibility for reading by a human viewer and/or for character recognition by a handwriting recognition application. The displacement techniques can comprise a “rubber sheet” displacement algorithm in conjunction with a “rubber rod” displacement algorithm, which can collectively preserve spatial features of the handwriting during warping thereof.
    • 公开了促进数字生成的笔迹的归一化和美化的系统和方法,诸如可以在平板PC上生成或通过扫描手写文档。 分类器可以根据预定类别(例如,底部,基线,中线,顶部,其他等)识别数字手写中的极值并标记这样的极值。 可以执行多线性回归,多项式回归等,以将标记的极值与标签所示的相应和对应的期望点对齐。 此外,位移技术可以应用于回归的笔迹,以优化由人类观察者阅读的可读性和/或通过手写识别应用的字符识别。 位移技术可以包括“橡胶片”位移算法,结合“橡胶棒”位移算法,其可以在其翘曲期间共同保留笔迹的空间特征。
    • 3. 发明申请
    • Tarp filter
    • 篷布过滤器
    • US20060078210A1
    • 2006-04-13
    • US11287671
    • 2005-11-28
    • Patrice SimardHenrique MalvarDinei FlorencioDavid Steinkraus
    • Patrice SimardHenrique MalvarDinei FlorencioDavid Steinkraus
    • G06K9/36
    • G06T9/004G06T9/007
    • Systems and methods for performing adaptive filtering are disclosed. The present invention generates probabilities that can be used in an encoder, such as an arithmetic encoder and generates those probabilities in a computationally efficient manner. Probabilities of previously encoded coefficients are employed, effectively, in generating probabilities of the coefficients without regard to directional information. Thus, a large amount of information is adaptively and efficiently used in generating the probabilities. For the coefficients, the probability is computed based at least partly on at least one probability of a previously computed probability of a neighboring coefficient. Then, the coefficients are encoded using those computed probabilities.
    • 公开了用于执行自适应滤波的系统和方法。 本发明产生可以在诸如算术编码器的编码器中使用的概率,并以计算有效的方式生成这些概率。 先前编码的系数的概率被有效地用于在不考虑方向信息的情况下生成系数的概率。 因此,在生成概率时自适应地有效地使用大量的信息。 对于系数,概率至少部分地基于先前计算的相邻系数的概率的至少一个概率来计算。 然后,使用那些计算的概率对系数进行编码。
    • 4. 发明申请
    • PROCESSING MACHINE LEARNING TECHNIQUES USING A GRAPHICS PROCESSING UNIT
    • 使用图形处理单元处理机器学习技术
    • US20070211064A1
    • 2007-09-13
    • US11748474
    • 2007-05-14
    • Ian BuckPatrice SimardDavid Steinkraus
    • Ian BuckPatrice SimardDavid Steinkraus
    • G06F13/14
    • G06N99/005G06N3/08
    • A system and method for processing machine learning techniques (such as neural networks) and other non-graphics applications using a graphics processing unit (GPU) to accelerate and optimize the processing. The system and method transfers an architecture that can be used for a wide variety of machine learning techniques from the CPU to the GPU. The transfer of processing to the GPU is accomplished using several novel techniques that overcome the limitations and work well within the framework of the GPU architecture. With these limitations overcome, machine learning techniques are particularly well suited for processing on the GPU because the GPU is typically much more powerful than the typical CPU. Moreover, similar to graphics processing, processing of machine learning techniques involves problems with solving non-trivial solutions and large amounts of data.
    • 一种用于处理机器学习技术(例如神经网络)和使用图形处理单元(GPU)来加速和优化处理的其他非图形应用的系统和方法。 该系统和方法传输一种可用于从CPU到GPU的各种机器学习技术的架构。 处理到GPU的转移是通过克服这些限制并在GPU架构的框架内工作良好的几种新技术实现的。 由于克服了这些限制,机器学习技术特别适用于GPU上的处理,因为GPU通常比典型的CPU功能更强大。 此外,类似于图形处理,机器学习技术的处理涉及解决非平凡解决方案和大量数据的问题。
    • 8. 发明申请
    • Optimizing performance of a graphics processing unit for efficient execution of general matrix operations
    • 优化图形处理单元的性能,以有效执行一般矩阵运算
    • US20050197977A1
    • 2005-09-08
    • US10877730
    • 2004-06-25
    • Ian BuckDavid SteinkrausRichard Szeliski
    • Ian BuckDavid SteinkrausRichard Szeliski
    • G06F15/18
    • G06T1/20G06F17/16G06N3/063G06N99/005
    • A system and method for optimizing the performance of a graphics processing unit (GPU) for processing and execution of general matrix operations such that the operations are accelerated and optimized. The system and method describes the layouts of operands and results in graphics memory, as well as partitioning the processes into a sequence of passes through a macro step. Specifically, operands are placed in memory in a pattern, results are written into memory in a pattern appropriate for use as operands in a later pass, data sets are partitioned to insure that each pass fits into fixed sized memory, and the execution model incorporates generally reusable macro steps for use in multiple passes. These features enable greater efficiency and speed in processing and executing general matrix operations.
    • 一种用于优化用于处理和执行一般矩阵运算的图形处理单元(GPU)的性能的系统和方法,使得加速和优化操作。 该系统和方法描述了图形存储器中的操作数和结果的布局,以及将进程分割成通过宏步骤的顺序。 具体来说,操作数以模式放置在存储器中,结果以适合在稍后传递中用作操作数的模式写入存储器,数据集被分区以确保每个通过符合固定大小的存储器,并且执行模型通常包含 可重复使用的宏步骤可用于多次通过。 这些特性使得在处理和执行通用矩阵运算时能够提高效率和速度。