会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • HYBRID TRANSPARENT CONDUCTIVE ELECTRODES
    • 混合透明导电电极
    • WO2010062708A3
    • 2010-08-19
    • PCT/US2009062887
    • 2009-10-30
    • POON HAK FEIROBINSON MATTHEW RERBEN CHRISTOPHERVAN DUREN JEROEN K JSHEATS JAMES R
    • POON HAK FEIROBINSON MATTHEW RERBEN CHRISTOPHERVAN DUREN JEROEN K JSHEATS JAMES R
    • H01L31/042H01L31/05
    • H01L31/1884H01L31/022466H01L31/022483Y02E10/50
    • Methods and devices are provided for improved photovoltaic devices. In one embodiment, the transparent electrode of a thin-film solar cell is replaced in part by a sheet of nanowires. One technique for use in present invention comprises forming a solar cell having: a) a thinner than usual transparent top electrode of a conductive material having a reduced thickness and b) an interconnected network of nanowires in contact with and/or coated by the top electrode. In some embodiments, the top electrode and network of nanowires increases overall power output of the solar cell compared to an otherwise identical cell using only a) a top electrode layer of the material at a thickness and light transmission equal to a combined thickness and light transmission of the top electrode and the network of nanowires, or b) an interconnected network of nanowires of thickness equal to the combined thickness and light transmission.
    • 为改进的光伏器件提供了方法和装置。 在一个实施例中,薄膜太阳能电池的透明电极部分地被一片纳米线替代。 用于本发明的一种技术包括形成太阳能电池,其具有:a)比通常具有较薄厚度的导电材料的透明顶部电极薄,b)与顶部电极接触和/或涂覆的纳米线的互连网络 。 在一些实施例中,纳米线的顶部电极和网络与其它相同的电池相比,增加了太阳能电池的总功率输出,该电池仅使用a)材料的顶部电极层,其厚度和光透射率等于组合的厚度和光透射率 的顶部电极和纳米线网络,或b)互连的纳米线网络,其厚度等于组合的厚度和光透射率。
    • 5. 发明申请
    • HIGH-THROUGHPUT PRINTING OF SEMICONDUCTOR PRECURSOR LAYER FROM INTER-METALLIC MICROFLAKE PARTICLES
    • 来自金属微细颗粒的半导体前驱层的高通量印刷
    • WO2007101135A2
    • 2007-09-07
    • PCT/US2007062763
    • 2007-02-23
    • VAN DUREN JEROEN K JROBINSON MATTHEW RLEIDHOLM CRAIG R
    • VAN DUREN JEROEN K JROBINSON MATTHEW RLEIDHOLM CRAIG R
    • H01L31/18H01L31/0322H01L31/06H01L31/0749Y02E10/541Y02P70/521
    • Methods and devices are provided for high-throughput printing of semiconductor precursor layer from microflake particles. In one embodiment, the method comprises of transforming non-planar or planar precursor materials in an appropriate vehicle under the appropriate conditions to create dispersions of planar particles with stoichiometric ratios of elements equal to that of the feedstock or precursor materials, even after settling. In particular, planar particles disperse more easily, form much denser coatings (or form coatings with more interparticle contact area), and anneal into fused, dense films at a lower temperature and/or time than their counterparts made from spherical nanoparticles. These planar particles may be microflakes that have a' high aspect ratio. The resulting dense film formed from microflakes is particularly useful in forming photovoltaic devices. In one embodiment, at least one set of the particles in the ink may be inter-metallic flake particles (microflake or nanoflake) containing at least one group IB-IIIA inter-metallic alloy phase.
    • 提供了用于从微片粒子高通量印刷半导体前体层的方法和装置。 在一个实施方案中,该方法包括在合适的条件下,在合适的载体中转化非平面或平面前体材料,以产生具有等于原料或前体材料的化学计量比的化学计量比的平面颗粒的分散体,即使在沉降之后。 特别地,平面颗粒更容易分散,形成更致密的涂层(或形成具有更多颗粒间接触面积的涂层),并在比球形纳米颗粒制成的对应物更低的温度和/或时间下退火成熔融的致密膜。 这些平面颗粒可以是具有“高纵横比”的微片。 由微片形成的所得致密膜在形成光伏器件中特别有用。 在一个实施方案中,油墨中的至少一组颗粒可以是含有至少一种IB-IIIA族金属间合金相的金属间薄片(微花纹或纳米薄片)。
    • 6. 发明申请
    • THIN-FILM DEVICES FROMED FROM SOLID PARTICLES
    • 来自固体颗粒的薄膜装置
    • WO2007146964A3
    • 2008-02-28
    • PCT/US2007071048
    • 2007-06-12
    • ROBINSON MATTHEW REBERSPACHER CHRISVAN DUREN JEROEN K J
    • ROBINSON MATTHEW REBERSPACHER CHRISVAN DUREN JEROEN K J
    • H01L21/203
    • H01L31/0322Y02E10/541
    • Methods and devices are provided for forming thin-films from solid group IIIA-based particles. In one embodiment of the present invention, a method is described comprising of providing a first material comprising an alloy of a) a group IIIA-based material and b) at least one other material. The material may be included in an amount sufficient so that no liquid phase of the alloy is present within the first material in a temperature range between room temperature and a deposition or pre-deposition temperature higher than room temperature, wherein the group IIIA-based material is otherwise liquid in that temperature range. The other material may be a group IA material. A precursor material may be formulated comprising a) particles of the first material and b) particles containing at least one element from the group consisting of: group IB, IIIA, VIA element, alloys containing any of the foregoing elements, or combinations thereof. The temperature range described above may be between about 2O0C and about 2000C. It should be understood that the alloy may have a higher melting temperature than a melting temperature of the IIIA-based material in elemental form.
    • 提供了用于从基于固体IIIA的颗粒形成薄膜的方法和装置。 在本发明的一个实施方案中,描述了一种方法,其包括提供包含a)基于IIIA族的材料和b)至少一种其它材料的合金的第一材料。 可以以足够的量包含材料,使得在室温和高于室温的沉积或预沉积温度之间的温度范围内,第一材料中不存在液相,其中基于IIIA族的材料 在该温度范围内为液体。 另一种材料可以是IA族材料。 可以配制前体材料,其包括:a)第一材料的颗粒,和b)含有至少一种元素的颗粒,所述元素包括:IB,IIIA族,VIA族元素,含有任何上述元素的合金,或其组合。 上述温度范围可以在约20℃至约200℃之间。 应当理解,该合金的熔融温度可以比基于IIIA的材料的元素形式的熔融温度更高。
    • 9. 发明申请
    • METTALIC DISPERSION AND FORMATION OF COMPOUND FILM FOR PHOTOVOLTAIC DEVICE ACTIVE LAYER
    • 金属分散体和形成用于光伏器件活性层的复合膜
    • WO2006101986A2
    • 2006-09-28
    • PCT/US2006009534
    • 2006-03-16
    • NANOSOLAR INCROBINSON MATTHEW RROSCHEISEN MARTIN REBERSPACHER CHRISVAN DUREN JEROEN K JLEIDHOLM CRAIG R
    • ROBINSON MATTHEW RROSCHEISEN MARTIN REBERSPACHER CHRISVAN DUREN JEROEN K JLEIDHOLM CRAIG R
    • H02N6/00
    • H01L31/0322C23C18/02C23C18/1216C23C18/1258C23C18/1279C23C18/1287H01L21/02568H01L21/02601H01L21/02628H01L31/0749Y02E10/541
    • A compound film may be formed by formulating a mixture of elemental nanoparticles composed of the IB, the IIIA, and, optionally, the VIA group of elements having a controlled overall composition. The nanoparticle mixture is combined with a suspension of nanoglobules of gallium to form a dispersion. The dispersion may be deposited onto a substrate to form a layer on the substrate. The layer may then be reacted in a suitable atmosphere to form the compound film. The compound film may be used as a light-absorbing layer in a photovoltaic device. Optionally, the compound film for an active layer of a photovoltaic device may be formed in two or more sub-layers. A first sub-layer having a first component of the active layer may be formed on a substrate with a first process. A second sub-layer including a second component of the active layer may then be formed using a second process such that the first sublayer is disposed between the second sub-layer and the substrate. The second component may have a different chemical composition than the first component. The first and/or second sub-layer may comprise one or more components in the form of particles and/or globules. This procedure may be repeated any number of times for any number of sub-layers so that active layer can be built up sequentially. The different chemical compositions of the components in the sub-layers can provide the active layer with a graded bandgap.
    • 可以通过配制由IB,IIIA和任选地具有受控整体组成的元素的VIA族组成的元素纳米颗粒的混合物来形成化合物膜。 将纳米颗粒混合物与镓的纳米金属的悬浮液组合以形成分散体。 可以将分散体沉积在基底上以在基底上形成层。 然后可以在合适的气氛中反应该层以形成化合物膜。 复合膜可以用作光伏器件中的光吸收层。 可选地,用于光伏器件的有源层的化合物膜可以形成为两个或更多个子层。 具有有源层的第一分量的第一子层可以用第一工艺形成在衬底上。 然后可以使用第二工序形成包括有源层的第二部件的第二子层,使得第一子层设置在第二子层和衬底之间。 第二组分可以具有与第一组分不同的化学组成。 第一和/或第二子层可以包括颗粒和/或小球形式的一种或多种组分。 对于任何数量的子层,该过程可以重复任意次数,以便可以顺序地建立活动层。 子层中组分的不同化学组成可以为活性层提供渐变的带隙。