会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明申请
    • PIXEL ARRANGEMENT FOR AN AUTOSTEREOSCOPIC DISPLAY APPARATUS
    • 用于自动立体显示设备的像素布置
    • WO2005006777A3
    • 2005-03-17
    • PCT/GB2004002975
    • 2004-07-09
    • OCUITY LTDHARROLD JONATHANWOODGATE GRAHAM JOHN
    • HARROLD JONATHANWOODGATE GRAHAM JOHN
    • H04N13/00H04N13/04
    • H04N13/0409H04N13/0404H04N13/0422H04N13/0454
    • An autostereoscopic display apparatus comprises a spatial light modulator comprising an array of pixels arranged in rows and columns in a pixel plane, and a spatially multiplexing parallax element capable of directing light from successive columns of pixels towards successive ones of two or more viewing windows in a nominal window plane. The pixels comprise pixel apertures having gaps therebetween with the gaps between the columns of pixels extending substantially parallel to the columns of pixels. The arrangement of the pixels is designed taking account of the intensity profile of an image of a nominal human pupil in the nominal window plane formed in the pixel plane by the spatially multiplexing parallax element to reduce the amount of spatially derived flicker observed by a viewer moving in the window plane. In one arrangement, the pixel apertures repeat at a pitch equal to a representative width of said intensity profile. In another arrangement, the total height of the pixel apertures parallel to the columns of pixels has a profile which increases towards the edges of the pixel apertures relative to the centre of the pixel apertures.
    • 一种自动立体显示设备包括:空间光调制器,其包括在像素平面中以行和列排列的像素阵列;以及空间复用视差元件,其能够将来自像素的连续列的光引导到在a中的连续的两个或更多个观察窗 标称窗口平面。 像素包括在其间具有间隙的像素孔,其中像素列之间的间隙基本上平行于像素列延伸。 考虑到由空间复用视差元件在像素平面中形成的标称窗平面中的标称人类瞳孔的图像的强度分布来设计像素的布置,以减少由观看者移动所观察到的空间上导出的闪烁的量 在窗户平面。 在一种布置中,像素孔径以等于所述强度分布的代表性宽度的间距重复。 在另一种布置中,平行于像素列的像素孔的总高度具有朝着像素孔的边缘相对于像素孔的中心增大的轮廓。
    • 4. 发明申请
    • SWITCHABLE BIREFRINGENT CYLINDRICAL LENS ARRAY
    • 可切换双折射圆柱镜头阵列
    • WO2004070467A2
    • 2004-08-19
    • PCT/GB2004000374
    • 2004-02-04
    • OCUITY LTDWOODGATE GRAHAM JOHNHARROLD JONATHAN
    • WOODGATE GRAHAM JOHNHARROLD JONATHAN
    • G02B27/22G02F1/1333G02F1/29H04N13/00
    • H04N13/0404G02B27/2214G02F1/133526G02F1/29G02F2001/294H04N13/0454H04N13/0456
    • A display apparatus has a switchable birefringent lens array. The lens array comprises birefringent material arranged between a planar surface of a first substrate and a relief substrate of a second substrate defining an array of cylindrical lenses. The birefringent material can be switched electrically between a first mode in which the lens array has a lensing effect and a second mode in which the lensing effect is substantially absent. The director of the birefringent material may be arranged to lie in the plane of the substrates (twisted nematic orientation), or the director may be aligned homeotropically at the relief surface. The lens array may be located between a spatial light modulator and the output polariser of the display apparatus. The spatial light modulator may be emissive. Variations in the lens temperature may be compensated for in order to extend its operating range.
    • 显示装置具有可切换的双折射透镜阵列。 透镜阵列包括布置在第一基板的平坦表面和第二基板的凸版基板之间的双折射材料,第二基板限定柱面透镜阵列。 双折射材料可以在透镜阵列具有透镜效应的第一模式和透镜效应基本上不存在的第二模式之间电切换。 双折射材料的导向器可以布置成位于基底的平面内(扭曲向列取向),或者导向器可以在凸起表面垂直排列。 透镜阵列可以位于显示装置的空间光调制器和输出偏振器之间。 空间光调制器可以是发射型的。 为了延长其工作范围,可以补偿镜头温度的变化。
    • 10. 发明专利
    • LED array fabrication
    • GB2463989A
    • 2010-04-07
    • GB0917237
    • 2009-10-01
    • OPTOVATE LTD
    • WOODGATE GRAHAM JOHNHARROLD JONATHAN
    • H01L25/075H05B44/00
    • The LEDs (72,74) are fabricated as a monolithic structure on a semiconductor wafer and are separated by sawing, cutting etc. Selected non-adjacent LEDs are removed from the diced monolithic wafer and transferred to a heat dissipating substrate in a single process step whilst maintaining their relative positions and separations. An array of lenses 122, 124 or reflectors is also transferred onto the LED assembly formed on the heat dissipating substrate. The LEDs typically have dimensions of 25-100 microns which reduces losses due to internal reflection and increases light output. The density of the LED assembly on the heat dissipating substrate is smaller than the density of the LEDs as formed on the monolithic wafer, maintaining the relative positions and orientations of the transferred LEDs in this way ensures that heat can be effectively removed from the LEDs. The manufacturing efficiency is improved in comparison with conventional pick and place techniques where individual LEDs from the monolithic wafer are selected and transferred to an LED array substrate in a sequential manner. The light emitting elements have a width/diameter of less than or equal to 300 micrometers.