会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Multi-axis wheel transducer with angular position detector
    • 具有角位置检测器的多轴轮传感器
    • US5886350A
    • 1999-03-23
    • US92358
    • 1998-06-05
    • Nathan H. CookForest J. CarignanBruce F. White
    • Nathan H. CookForest J. CarignanBruce F. White
    • G01B11/26G01B11/275G01D5/34G01L5/16G01L5/20G01L5/00
    • G01D5/344G01B11/26G01B11/275G01D5/34G01D5/345G01L5/161G01L5/20G01B2210/16G01B2210/28
    • An apparatus and method for a multi-axis wheel transducer are disclosed. The apparatus of the invention comprises a wheel transducer for measuring the loads and moments acting on a vehicle wheel. Tubular load cells positioned in a radial fashion around the perimeter of the transducer hub join the rim and hub. Loads and moments acting on the rim of the wheel are transferred through the spoke-like load cells to the hub of the wheel. Sensors strategically positioned around the circumference of the tubular load cell monitor the intensity of the loads and moments. To detect angular position of the wheel, a light source generates a cone of polarized light to flood the wheel of the vehicle and detector-polarizing filter pairs detect an angle of the polarization relative to the wheel to determine its angular position. The transducer hub computer processes the sensor data and transfers the information via infrared signal to a computer located in the fender of the vehicle.
    • 公开了一种用于多轴车轮换能器的装置和方法。 本发明的装置包括用于测量作用在车轮上的载荷和力矩的轮转换器。 围绕换能器毂的周边以径向方式定位的管状测力传感器连接轮缘和轮毂。 作用在车轮轮缘上的载荷和力矩通过轮辐状称重传感器传递到轮毂。 围绕管状测力传感器圆周的策略性定位的传感器监测载荷和力矩的强度。 为了检测车轮的角度位置,光源产生偏振光锥以使车辆的车轮淹没,并且检测器偏振过滤器对检测相对于车轮偏振的角度以确定其角位置。 传感器集线器计算机处理传感器数据并通过红外信号将信息传送到位于车辆挡泥板中的计算机。
    • 5. 发明授权
    • Method and apparatus for joint motion simulation
    • 联合运动模拟方法与装置
    • US09351857B2
    • 2016-05-31
    • US13295610
    • 2011-11-14
    • Forest J. CarignanBruce F. White
    • Forest J. CarignanBruce F. White
    • A61F2/76B25J17/02A61F2/68A61F2/46G09B23/32A61F2/70A61F2/74A61F2/38
    • A61F2/76A61F2/38A61F2/468A61F2/68A61F2002/701A61F2002/704A61F2002/741B25J17/0266G09B23/32Y10T74/20207Y10T74/20348
    • A joint motion simulator to simulate biomechanical motion includes a mount to which a prosthetic device is mounted, actuators coupled to the mount to drive the mount, and a programmable controller to drive the actuators to translate the mount and to rotate the mount with a center of rotation controllable independent of translation. The simulator can include a linear actuator to translate the mount in a linear direction substantially parallel to the axis of rotation. The linear actuator can include a piston within a sleeve, the piston being coupled to the mount and being hydraulically driven to translate the mount, and the actuators can be coupled to the sleeve. The controller may be programmed to vary the center of rotation with linear translation and rotation of the mount. Sensors may be included that measure displacement of the actuators. The controller may drive the actuators based on the measured displacement.
    • 用于模拟生物力学运动的关节运动模拟器包括安装有假体装置的安装座,联接到安装件以驱动安装件的致动器,以及可编程控制器,用于驱动致动器平移安装件并使安装件以 旋转可控独立的翻译。 模拟器可以包括线性致动器,以平行于旋转轴线的直线方向平移底座。 线性致动器可以包括在套筒内的活塞,活塞联接到安装件并且被液压驱动以平移安装件,并且致动器可以联接到套筒。 控制器可以被编程以通过安装座的线性平移和旋转来改变旋转中心。 可以包括测量致动器的位移的传感器。 控制器可以基于测量的位移来驱动致动器。
    • 6. 发明申请
    • METHOD AND APPARATUS FOR JOINT MOTION SIMULATION
    • 联合运动模拟的方法和装置
    • US20120123592A1
    • 2012-05-17
    • US13295610
    • 2011-11-14
    • Forest J. CarignanBruce F. White
    • Forest J. CarignanBruce F. White
    • G05B15/02
    • A61F2/76A61F2/38A61F2/468A61F2/68A61F2002/701A61F2002/704A61F2002/741B25J17/0266G09B23/32Y10T74/20207Y10T74/20348
    • A joint motion simulator to simulate biomechanical motion includes a mount to which a prosthetic device is mounted, actuators coupled to the mount to drive the mount, and a programmable controller to drive the actuators to translate the mount and to rotate the mount with a center of rotation controllable independent of translation. The simulator can include a linear actuator to translate the mount in a linear direction substantially parallel to the axis of rotation. The linear actuator can include a piston within a sleeve, the piston being coupled to the mount and being hydraulically driven to translate the mount, and the actuators can be coupled to the sleeve. The controller may be programmed to vary the center of rotation with linear translation and rotation of the mount. Sensors may be included that measure displacement of the actuators. The controller may drive the actuators based on the measured displacement.
    • 用于模拟生物力学运动的关节运动模拟器包括安装有假体装置的安装座,联接到安装件以驱动安装件的致动器,以及可编程控制器,用于驱动致动器平移安装件并使安装件以 旋转可控独立的翻译。 模拟器可以包括线性致动器,以平行于旋转轴线的直线方向平移底座。 线性致动器可以包括在套筒内的活塞,活塞联接到安装件并且被液压驱动以平移安装件,并且致动器可以联接到套筒。 控制器可以被编程以通过安装座的线性平移和旋转来改变旋转中心。 可以包括测量致动器的位移的传感器。 控制器可以基于测量的位移来驱动致动器。
    • 7. 发明授权
    • System and method for joint motion simulation
    • 联合运动模拟系统和方法
    • US08805662B2
    • 2014-08-12
    • US12942886
    • 2010-11-09
    • Bruce F. White
    • Bruce F. White
    • G06G7/58
    • G09B23/32
    • A simulator for driving a prosthetic element includes a prosthetic drive mechanism that drive the prosthetic element during an accelerated wear test of the prosthetic element. A simulation input represents the action of the simulator and a sensor mechanism is used to measure the force and torque applied to the prosthetic element. Position and orientation control sensors are further used to measure displacement of the prosthetic element. A closed loop feedback control system, responsive to the sensors, is used to determine a drive signal for the drive mechanism. The control system advantageously adds a computational model that incorporates mechanical representations of ligament fibers. The computational model is a non-human approximation to situations that would be encountered by the prosthesis within the human body and includes dimensional geometry of insertion sites and mechanical properties of ligament fibers. The computational model is responsive to the position and angular displacement sensors to determine constraint forces and torques of ligaments that mitigate action of the control system. The action of the control system may further be mitigated by the measured force and torque.
    • 用于驱动假体元件的模拟器包括在假肢元件的加速磨损测试期间驱动假体元件的假体驱动机构。 模拟输入表示模拟器的作用,并且传感器机构用于测量施加到假肢元件的力和扭矩。 位置和方向控制传感器进一步用于测量假体元件的位移。 响应于传感器的闭环反馈控制系统被用于确定驱动机构的驱动信号。 控制系统有利地增加了包含韧带纤维的机械表示的计算模型。 计算模型是对人体内假体将遇到的情况的非人类近似,并且包括韧带纤维的插入部位的尺寸几何形状和机械性质。 计算模型响应于位置和角位移传感器,以确定减轻控制系统动作的韧带的约束力和扭矩。 控制系统的作用可以通过测量的力和扭矩进一步减轻。
    • 9. 发明申请
    • SYSTEM AND METHOD FOR JOINT MOTION SIMULATION
    • 用于联合运动模拟的系统和方法
    • US20110118878A1
    • 2011-05-19
    • US12942886
    • 2010-11-09
    • Bruce F. White
    • Bruce F. White
    • G05B15/00
    • G09B23/32
    • A simulator for driving a prosthetic element includes a prosthetic drive mechanism that drive the prosthetic element during an accelerated wear test of the prosthetic element. A simulation input represents the action of the simulator and a sensor mechanism is used to measure the force and torque applied to the prosthetic element. Position and orientation control sensors are further used to measure displacement of the prosthetic element. A closed loop feedback control system, responsive to the sensors, is used to determine a drive signal for the drive mechanism. The control system advantageously adds a computational model that incorporates mechanical representations of ligament fibers. The computational model is a non-human approximation to situations that would be encountered by the prosthesis within the human body and includes dimensional geometry of insertion sites and mechanical properties of ligament fibers. The computational model is responsive to the position and angular displacement sensors to determine constraint forces and torques of ligaments that mitigate action of the control system. The action of the control system may further be mitigated by the measured force and torque
    • 用于驱动假体元件的模拟器包括在假肢元件的加速磨损测试期间驱动假体元件的假体驱动机构。 模拟输入表示模拟器的作用,并且传感器机构用于测量施加到假肢元件的力和扭矩。 位置和方向控制传感器进一步用于测量假体元件的位移。 响应于传感器的闭环反馈控制系统被用于确定驱动机构的驱动信号。 控制系统有利地增加了包含韧带纤维的机械表示的计算模型。 计算模型是对人体内假体将遇到的情况的非人类近似,并且包括韧带纤维的插入部位的尺寸几何形状和机械性质。 计算模型响应于位置和角位移传感器,以确定减轻控制系统动作的韧带的约束力和扭矩。 控制系统的作用可以通过测量的力和扭矩进一步减轻
    • 10. 发明授权
    • Prosthetic simulator with soft tissue modeling
    • 假肢模拟器与软组织建模
    • US07823460B2
    • 2010-11-02
    • US11503867
    • 2006-08-14
    • Bruce F. White
    • Bruce F. White
    • G01N19/00
    • A61F2/468A61F2/24A61F2/32A61F2/38A61F2/3804A61F2/3859A61F2/389A61F2/40A61F2/4202A61F2/44
    • A virtual soft tissue control system that provides enhanced motion control to a prosthetic simulator machine. The control system advantageously adds a “virtual soft tissue” control scheme to a conventional control system, such as a digital proportional integral derivative (PID) controller, to algorithmically model the soft tissue constraints that would be encountered by the prosthesis within the human body, and account for these forces in driving the simulator. In another aspect, a prosthetic simulator comprises a prosthetic drive mechanism; a feedback control system that drives the prosthetic drive mechanism; and an iterative learning control system that determines an error from a previous iteration of motion of the drive mechanism and uses the error to determine a drive signal for a subsequent iteration of motion. In certain embodiments, the prosthetic simulator uses both a soft tissue model and an iterative learning control system.
    • 虚拟软组织控制系统,为假肢模拟机提供增强的运动控制。 控制系统有利地将诸如数字比例积分微分(PID)控制器的常规控制系统的“虚拟软组织”控制方案添加到对人体内假体将遇到的软组织约束进行算术建模, 并在驾驶模拟器时解释这些力量。 在另一方面,假体模拟器包括假体驱动机构; 驱动假体驱动机构的反馈控制系统; 以及迭代学习控制系统,其从先前的驱动机构的运动迭代确定误差,并使用该误差来确定用于随后的运动迭代的驱动信号。 在某些实施例中,假肢模拟器使用软组织模型和迭代学习控制系统。