会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • Fluid Collector
    • 集流器
    • US20130274718A1
    • 2013-10-17
    • US13445987
    • 2012-04-13
    • Nan-Kuang YaoJhy-Wen WuLuo-Hwa MiauJen-Chien ChienShi-Fu ChenLi-Ling Li
    • Nan-Kuang YaoJhy-Wen WuLuo-Hwa MiauJen-Chien ChienShi-Fu ChenLi-Ling Li
    • A61M27/00
    • A61M1/0001A61M1/0025A61M1/0031A61M1/0088A61M2205/18A61M2205/3334A61M2205/3382
    • A fluid collector has a container, a T-tube, a first screw unit and a second screw unit. The T-tube is connected to the container and has a main pipe and a branch pipe. The first screw unit is mounted in an outlet end of the main pipe. The second screw unit is mounted in a connecting end of the branch pipe, which is connected to the main pipe. The branch pipe has a detecting opening far from the connecting end and connects to a detecting device. By changing the length of the first and second screw units, different detecting values of the pressure are adjusted according to containers with different capacities. Moreover, with the flowing resistance resulting from the first and second screw units, different pressure variations are performed when liquid or air passes through the T-tube. Therefore, massive hemorrhage is clearly identified to keep the patient safe.
    • 流体收集器具有容器,T形管,第一螺丝单元和第二螺钉单元。 T型管与容器连接,并具有主管和分支管。 第一螺杆单元安装在主管的出口端。 第二螺钉单元安装在分支管的连接端上,该分支管连接到主管。 分支管具有远离连接端的检测开口并连接到检测装置。 通过改变第一和第二螺杆单元的长度,根据具有不同容量的容器来调节不同的压力检测值。 此外,由于由第一和第二螺杆单元产生的流动阻力,当液体或空气通过T形管时,执行不同的压力变化。 因此,清楚地确定大量出血以保持患者的安全。
    • 2. 发明授权
    • Fluid collector
    • 流体收集器
    • US09095644B2
    • 2015-08-04
    • US13445987
    • 2012-04-13
    • Nan-Kuang YaoJhy-Wen WuLuo-Hwa MiauJen-Chien ChienShi-Fu ChenLi-Ling Li
    • Nan-Kuang YaoJhy-Wen WuLuo-Hwa MiauJen-Chien ChienShi-Fu ChenLi-Ling Li
    • A61M1/00
    • A61M1/0001A61M1/0025A61M1/0031A61M1/0088A61M2205/18A61M2205/3334A61M2205/3382
    • A fluid collector has a container, a T-tube, a first screw unit and a second screw unit. The T-tube is connected to the container and has a main pipe and a branch pipe. The first screw unit is mounted in an outlet end of the main pipe. The second screw unit is mounted in a connecting end of the branch pipe, which is connected to the main pipe. The branch pipe has a detecting opening far from the connecting end and connects to a detecting device. By changing the length of the first and second screw units, different detecting values of the pressure are adjusted according to containers with different capacities. Moreover, with the flowing resistance resulting from the first and second screw units, different pressure variations are performed when liquid or air passes through the T-tube. Therefore, massive hemorrhage is clearly identified to keep the patient safe.
    • 流体收集器具有容器,T形管,第一螺丝单元和第二螺钉单元。 T型管与容器连接,并具有主管和分支管。 第一螺杆单元安装在主管的出口端。 第二螺钉单元安装在分支管的连接端上,该分支管连接到主管。 分支管具有远离连接端的检测开口并连接到检测装置。 通过改变第一和第二螺杆单元的长度,根据具有不同容量的容器来调节不同的压力检测值。 此外,由于由第一和第二螺杆单元产生的流动阻力,当液体或空气通过T形管时,执行不同的压力变化。 因此,清楚地确定大量出血以保持患者的安全。
    • 5. 发明授权
    • Wound treatment apparatus
    • 伤口治疗仪
    • US08148596B2
    • 2012-04-03
    • US12497607
    • 2009-07-03
    • Luo-Hwa MiauJhy-Wen WuNan-Kuang Yao
    • Luo-Hwa MiauJhy-Wen WuNan-Kuang Yao
    • A61F13/00
    • A61M27/00A61F13/0206A61F13/0216A61F13/0226A61F13/0246A61M1/0088
    • A wound treatment apparatus is disclosed, which comprises: a first portion, a second portion and a porous matrix. In an exemplary embodiment of the invention, the first portion, being an adhesive film, is formed with at least a first hole; and the second portion, being made of a flexible, water-resistant material, is formed with at least a second hole and at least a third hole in a manner that the at least one second hole and the at least one third hole are capable of communicating with each other and thus causes an accommodation space to be formed inside the second portion while the at least one second hole is arranged at a position corresponding to the at least one first hole as the second portion is connected to the first portion. Moreover, the porous matrix is received inside the accommodation space of the second portion.
    • 公开了一种伤口治疗装置,其包括:第一部分,第二部分和多孔基质。 在本发明的示例性实施例中,作为粘合膜的第一部分至少形成有第一孔; 并且由柔性防水材料制成的第二部分形成有至少第二孔和至少第三孔,使得所述至少一个第二孔和所述至少一个第三孔能够 彼此连通,从而在第二部分内部形成容纳空间,同时当第二部分连接到第一部分时,至少一个第二孔布置在与至少一个第一孔相对应的位置。 此外,多孔基质容纳在第二部分的容纳空间的内部。
    • 6. 发明授权
    • Gravity-driven micropump
    • 重力驱动的微型泵
    • US08173078B2
    • 2012-05-08
    • US10835101
    • 2004-04-28
    • Nan-Kuang YaoJhy-Wen Wu
    • Nan-Kuang YaoJhy-Wen Wu
    • B01L3/00
    • F04B19/006
    • A microfluidic chip with a built-in gravity-driven micropump is provided. The gravity-driven micropump comprises a winding channel, an inert fluidic material placed inside the winding channel, and a suction channel that links the winding channel to the microfluidic chip. The winding channel is for the inert fluidic material to flow in. A fixed volume of high density, inert fluidic material is placed in the winding channel to act as a micropump in the bio chip. When the microfluidic chip is placed in a declining or standing position, the inert fluidic material flows along the winding channel due to the gravity. The invention provides a simple, convenient, and robust microfluid pumping source. With the built-in micropump, this invention is free-of-pollution and saves the manufacturing cost for the pipe link between the bio chip and peripheral devices.
    • 提供具有内置重力驱动微型泵的微流控芯片。 重力驱动的微型泵包括绕组通道,放置在绕组通道内部的惰性流体材料以及将绕组通道连接到微流体芯片的抽吸通道。 卷绕通道用于惰性流体材料流入。固定体积的高密度惰性流体材料被放置在绕组通道中以用作生物芯片中的微型泵。 当微流体芯片处于下降或静止位置时,惰性流体材料由于重力而沿着缠绕通道流动。 本发明提供了一种简单,方便,可靠的微流体泵浦源。 利用内置的微型泵,本发明无污染,节省了生物芯片与外围设备之间管路连接的制造成本。
    • 8. 发明授权
    • Gravity-driven apparatus and method for control of microfluidic devices
    • 用于控制微流体装置的重力驱动装置和方法
    • US07097811B2
    • 2006-08-29
    • US11253981
    • 2005-10-19
    • Nan-Kuang YaoJhy-Wen Wu
    • Nan-Kuang YaoJhy-Wen Wu
    • B01L3/00
    • B01L3/50273B01L3/502746B01L2200/0621B01L2300/0816B01L2300/0867B01L2400/0457B01L2400/0694B01L2400/084Y10T436/2575
    • A gravity-driven apparatus and method control the flow order of reactants in microfluidic devices which are employed in a microfluidic chip. The gravity-driven apparatus flow order control mainly comprises a plurality of reactant chambers arranged at different heights, a plurality of flow-control microchannels, and a reaction chamber having a winding collection microchannel. Each reactant chamber has an air-in vent. Each pair of neighboring flow-control microchannels has a U-shaped structure connecting the pair of neighboring flow-control microchannels. To activate the microfluidic device, the device is placed in an inclining or standing position and the air-in vents are unsealed. This method enhances the reliability of flow order control for multiple reactants. It can be built in a microfluidic chip, and does not use any actuating power or element. Therefore, it is low in energy-consumption, low in manufacturing cost and free of pollution.
    • 重力驱动装置和方法控制在微流体芯片中使用的微流体装置中的反应物的流动顺序。 重力驱动装置流程顺序控制主要包括布置在不同高度的多个反应物室,多个流量控制微通道和具有卷绕收集微通道的反应室。 每个反应物室都有一个进气口。 每对相邻的流量控制微通道具有连接该对相邻的流量控制微通道的U形结构。 为了激活微流体装置,将装置置于倾斜或站立位置,并且将通风口开封。 这种方法提高了多种反应物流顺序控制的可靠性。 它可以内置在微流控芯片中,不使用任何驱动电源或元件。 因此,能源消耗低,制造成本低,无污染。
    • 10. 发明申请
    • Gravity-driven apparatus and method for control of microfluidic devices
    • 用于控制微流体装置的重力驱动装置和方法
    • US20050255004A1
    • 2005-11-17
    • US10836011
    • 2004-04-29
    • Nan-Kuang YaoJhy-Wen Wu
    • Nan-Kuang YaoJhy-Wen Wu
    • G01N35/08B01J19/00B01L3/00B81B1/00G01N37/00
    • B01L3/50273B01L3/502746B01L2200/0621B01L2300/0816B01L2300/0867B01L2400/0457B01L2400/0694B01L2400/084Y10T436/2575
    • A gravity-driven apparatus and method for controlling the flow order of reactants in microfluidic devices are provided, which are employed in a microfluidic chip. The gravity-driven apparatus flow order control mainly comprises a plurality of reactant chambers arranged in a stepwise pattern, a plurality of separate microchannels, and a reaction chamber having a winding converged microchannel. Each said reactant chamber has an air vent channel. Each pair of neighboring separate microchannels has a U-shaped structure connecting the pair of neighboring separate microchannels. To activate the microfluidic chip, the microfluidic chip is placed in a declining or standing position and the air vents are unsealed. This invention enhances the reliability of flow order control for multiple reactants. It can be built in a microfluidic chip, and needs not use any activate power or element. Therefore, it is low in energy-consumption, low in manufacturing cost and free-of-pollution.
    • 提供了一种用于控制微流体装置中的反应物的流顺序的重力驱动装置和方法,其用于微流体芯片。 重力驱动装置流程顺序控制主要包括以逐步模式布置的多个反应物室,多个单独的微通道,以及具有卷绕收敛微通道的反应室。 每个所述反应物室具有排气通道。 每对相邻的单独微通道具有连接该对相邻的单独微通道的U形结构。 为了激活微流体芯片,微流控芯片被放置在下降或站立的位置,并且通气口是非密封的。 本发明提高了多种反应物流动顺序控制的可靠性。 它可以内置在微流控芯片中,不需要使用任何激活电源或元件。 因此,能源消耗低,制造成本低,污染自由。