会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Self-aligned bipolar transistor structure
    • 自对准双极晶体管结构
    • US08148799B2
    • 2012-04-03
    • US12692892
    • 2010-01-25
    • Monir El-DiwanyAlexei SadovnikovJamal Ramdani
    • Monir El-DiwanyAlexei SadovnikovJamal Ramdani
    • H01L21/00
    • H01L29/0817H01L29/66242H01L29/7378
    • A bipolar transistor structure comprises a semiconductor substrate having a first conductivity type, a collector region having a second conductivity type that is opposite the first conductivity type formed in a substrate active device region defined by isolation dielectric material formed in an upper surface of the semiconductor substrate, a base region that includes an intrinsic base region having the first conductivity type formed over the collector region and an extrinsic base region having the second conductivity type formed over the isolation dielectric material, and a sloped in-situ doped emitter plug having the second conductivity type formed on the intrinsic base region.
    • 双极晶体管结构包括具有第一导电类型的半导体衬底,具有与在形成于半导体衬底的上表面中的隔离电介质材料限定的衬底有源器件区域中形成的第一导电类型相反的第二导电类型的集电极区域 包括在集电极区域上形成的具有第一导电类型的本征基极区域和形成在隔离电介质材料上的具有第二导电类型的非本征基极区域的基极区域和具有第二导电性的倾斜的原位掺杂发射极插塞 形成在本征基区上。
    • 4. 发明授权
    • Stress compensation for large area gallium nitride or other nitride-based structures on semiconductor substrates
    • 对半导体衬底上的大面积氮化镓或其它基于氮化物的结构的应力补偿
    • US08723296B2
    • 2014-05-13
    • US12927947
    • 2010-11-30
    • Jamal Ramdani
    • Jamal Ramdani
    • H01L29/66H01L21/20
    • H01L21/0254H01L21/0237H01L21/02458H01L21/02639H01L29/2003
    • A method includes forming a stress compensating stack over a substrate, where the stress compensating stack has compressive stress on the substrate. The method also includes forming one or more Group III-nitride islands over the substrate, where the one or more Group III-nitride islands have tensile stress on the substrate. The method further includes at least partially counteracting the tensile stress from the one or more Group III-nitride islands using the compressive stress from the stress compensating stack. Forming the stress compensating stack could include forming one or more oxide layers and one or more nitride layers over the substrate. The one or more oxide layers can have compressive stress, the one or more nitride layers can have tensile stress, and the oxide and nitride layers could collectively have compressive stress. Thicknesses of the oxide and nitride layers can be selected to provide the desired amount of stress compensation.
    • 一种方法包括在衬底上形成应力补偿堆叠,其中应力补偿堆叠在衬底上具有压应力。 该方法还包括在衬底上形成一个或多个III族氮化物岛,其中一个或多个III族氮化物岛在衬底上具有拉伸应力。 该方法还包括使用来自应力补偿叠层的压缩应力至少部分地抵消来自一个或多个III族氮化物岛的拉伸应力。 形成应力补偿堆叠可以包括在衬底上形成一个或多个氧化物层和一个或多个氮化物层。 一个或多个氧化物层可以具有压应力,一个或多个氮化物层可以具有拉伸应力,并且氧化物和氮化物层可以共同地具有压应力。 可以选择氧化物层和氮化物层的厚度以提供所需量的应力补偿。
    • 7. 发明授权
    • Magneto electric sensor with injected up-conversion or down-conversion
    • 磁电传感器带有上变频或下变频
    • US08581579B2
    • 2013-11-12
    • US12927205
    • 2010-11-09
    • Lawrence H. ZuckermanMichael X. MaidaDennis M. MonticelliJames B. WieserJamal Ramdani
    • Lawrence H. ZuckermanMichael X. MaidaDennis M. MonticelliJames B. WieserJamal Ramdani
    • G01R33/12
    • A61B5/04007A61B5/7239A61B5/743
    • A method includes generating an electrical signal representing a magnetic field using a magnetic field sensor having alternating layers of magneto-strictive material and piezo-electric material. The method also includes performing up-conversion or down-conversion so that the electrical signal representing the magnetic field has a higher or lower frequency than a frequency of the magnetic field. The up-conversion or down-conversion is performed before the magnetic field is converted into the electrical signal. The up-conversion or down-conversion could be performed by repeatedly sensitizing and desensitizing the magnetic field sensor. This could be done using a permanent magnet and an electromagnet, an electromagnet without a permanent magnet, or a movable permanent magnet. The up-conversion or down-conversion could also be performed by chopping the magnetic field. The chopping could involve intermittently shielding the magnetic field sensor from the magnetic field or moving the magnetic field sensor with respect to the magnetic field.
    • 一种方法包括使用具有交替的磁致伸缩材料层和压电材料的磁场传感器来产生表示磁场的电信号。 该方法还包括执行上变频或下变频,使得表示磁场的电信号具有比磁场频率更高或更低的频率。 在磁场转换成电信号之前执行上转换或下变频。 上转换或下转换可以通过使磁场传感器反复敏感和脱敏来进行。 这可以使用永磁体和电磁体,没有永磁体的电磁体或可动永磁体来完成。 也可以通过切割磁场来执行上变频或下变频。 斩波可能会将磁场传感器与磁场间断地屏蔽或相对于磁场移动磁场传感器。
    • 9. 发明申请
    • Normally-off gallium nitride-based semiconductor devices
    • 通常的氮化镓基半导体器件
    • US20110180854A1
    • 2011-07-28
    • US12657757
    • 2010-01-27
    • Jamal Ramdani
    • Jamal Ramdani
    • H01L29/778H01L21/335
    • H01L29/225H01L29/2003H01L29/66462H01L29/7786
    • A method includes forming a relaxed layer in a semiconductor device. The method also includes forming a tensile layer over the relaxed layer, where the tensile layer has tensile stress. The method further includes forming a compressive layer over the relaxed layer, where the compressive layer has compressive stress. The compressive layer has a piezoelectric polarization that is approximately equal to or greater than a spontaneous polarization in the relaxed, tensile, and compressive layers. The piezoelectric polarization in the compressive layer could be in an opposite direction than the spontaneous polarization in the compressive layer. The relaxed layer could include gallium nitride, the tensile layer could include aluminum gallium nitride, and the compressive layer could include aluminum indium gallium nitride.
    • 一种方法包括在半导体器件中形成松弛层。 该方法还包括在松弛层上形成拉伸层,其中拉伸层具有拉伸应力。 该方法还包括在松弛层上形成压缩层,其中压缩层具有压应力。 压缩层具有大致等于或大于松弛,拉伸和压缩层中的自发极化的压电极化。 压缩层中的压电极化可能与压缩层中的自发极化方向相反。 松弛层可以包括氮化镓,拉伸层可以包括氮化镓铝,并且压缩层可以包括铝铟镓氮。
    • 10. 发明申请
    • SEMICONDUCTOR DEVICE HAVING LOCALIZED INSULATED BLOCK IN BULK SUBSTRATE AND RELATED METHOD
    • 具有大块基板中的局部绝缘块的半导体器件及相关方法
    • US20110042778A1
    • 2011-02-24
    • US12917332
    • 2010-11-01
    • Craig PrintyAndre P. LabonteJamal Ramdani
    • Craig PrintyAndre P. LabonteJamal Ramdani
    • H01L29/06
    • H01L27/1207H01L21/76264
    • One or more trenches can be formed around a first portion of a semiconductor substrate, and an insulating layer can be formed under the first portion of the semiconductor substrate. The one or more trenches and the insulating layer electrically isolate the first portion of the substrate from a second portion of the substrate. The insulating layer can be formed by forming a buried layer in the substrate, such as a silicon germanium layer in a silicon substrate. One or more first trenches through the substrate to the buried layer can be formed, and open spaces can be formed in the buried layer (such as by using an etch selective to silicon germanium over silicon). The one or more first trenches and the open spaces can optionally be filled with insulative material(s). One or more second trenches can be formed and filled to isolate the first portion of the substrate.
    • 可以在半导体衬底的第一部分周围形成一个或多个沟槽,并且可以在半导体衬底的第一部分之下形成绝缘层。 一个或多个沟槽和绝缘层将衬底的第一部分与衬底的第二部分电隔离。 可以通过在硅衬底中的诸如硅锗层的衬底中形成掩埋层来形成绝缘层。 可以形成通过衬底到掩埋层的一个或多个第一沟槽,并且可以在掩埋层中形成开放空间(例如通过使用对硅上的硅锗的选择性蚀刻)。 一个或多个第一沟槽和开放空间可以可选地用绝缘材料填充。 可以形成并填充一个或多个第二沟槽以隔离衬底的第一部分。