会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Termination for trench MIS device
    • 沟槽MIS器件的终止
    • US07795675B2
    • 2010-09-14
    • US11233145
    • 2005-09-21
    • Mohamed N. DarwishKyle W. TerrillJainhai QiQufei Chen
    • Mohamed N. DarwishKyle W. TerrillJainhai QiQufei Chen
    • H01L27/088
    • H01L29/7813H01L29/0847H01L29/0878H01L29/1095H01L29/42368H01L29/7811
    • A trench MIS device is formed in a P-epitaxial layer that overlies an N-epitaxial layer and an N+ substrate. In one embodiment, the device includes an N-type drain-drift region that extends from the bottom of the trench to the N-epitaxial layer. Preferably, the drain-drift region is formed at least in part by fabricating spacers on the sidewalls of the trench and implanting an N-type dopant between the sidewall spacers and through the bottom of the trench. The drain-drift region can be doped more heavily than the conventional “drift region” that is formed in an N-epitaxial layer. Thus, the device has a low on-resistance. The device can be terminated by a plurality of polysilicon-filled termination trenches located near the edge of the die, with the polysilicon in each termination trench being connected to the mesa adjacent the termination trench.
    • 沟槽MIS器件形成在覆盖在N外延层和N +衬底上的P外延层中。 在一个实施例中,器件包括从沟槽的底部延伸到N外延层的N型漏 - 漂移区。 优选地,漏极漂移区域至少部分地通过在沟槽的侧壁上制造间隔物并且在侧壁间隔物之间​​并通过沟槽的底部注入N型掺杂剂而形成。 漏极漂移区可以比在N外延层中形成的常规“漂移区”更重的掺杂。 因此,器件具有低导通电阻。 该器件可以由位于管芯边缘附近的多个多晶硅填充的端接沟槽端接,每个端接沟槽中的多晶硅与邻近端接沟槽的台面连接。
    • 2. 发明授权
    • Termination for trench MIS device having implanted drain-drift region
    • 具有植入漏极漂移区域的沟槽MIS器件的端接
    • US07268032B2
    • 2007-09-11
    • US11232613
    • 2005-09-21
    • Mohamed N. DarwishKyle W. TerrillJainhai QiQufei Chen
    • Mohamed N. DarwishKyle W. TerrillJainhai QiQufei Chen
    • H01L21/8238
    • H01L29/7813H01L29/0847H01L29/0878H01L29/1095H01L29/42368H01L29/7811
    • A trench MIS device is formed in a P-epitaxial layer that overlies an N-epitaxial layer and an N+ substrate. In one embodiment, the device includes an N-type drain-drift region that extends from the bottom of the trench to the N-epitaxial layer. Preferably, the drain-drift region is formed at least in part by fabricating spacers on the sidewalls of the trench and implanting an N-type dopant between the sidewall spacers and through the bottom of the trench. The drain-drift region can be doped more heavily than the conventional “drift region” that is formed in an N-epitaxial layer. Thus, the device has a low on-resistance. The device can be terminated by a plurality of polysilicon-filled termination trenches located near the edge of the die, with the polysilicon in each termination trench being connected to the mesa adjacent the termination trench. The polysilicon material in each termination trenches.
    • 沟槽MIS器件形成在覆盖在N外延层和N +衬底上的P外延层中。 在一个实施例中,器件包括从沟槽的底部延伸到N外延层的N型漏 - 漂移区。 优选地,漏极漂移区域至少部分地通过在沟槽的侧壁上制造间隔物并且在侧壁间隔物之间​​并通过沟槽的底部注入N型掺杂剂而形成。 漏极漂移区可以比在N外延层中形成的常规“漂移区”更重的掺杂。 因此,器件具有低导通电阻。 该器件可以由位于管芯边缘附近的多个多晶硅填充的端接沟槽端接,每个端接沟槽中的多晶硅与邻近端接沟槽的台面连接。 每个终端沟槽中的多晶硅材料。
    • 4. 发明授权
    • Process for manufacturing trench MIS device having implanted drain-drift region and thick bottom oxide
    • 用于制造具有注入漏极漂移区域和厚底部氧化物的沟槽MIS器件的工艺
    • US07435650B2
    • 2008-10-14
    • US10872931
    • 2004-06-21
    • Mohamed N. DarwishKyle W. TerrillJainhai Qi
    • Mohamed N. DarwishKyle W. TerrillJainhai Qi
    • H01L21/336
    • H01L29/7813H01L21/2253H01L21/28185H01L21/28194H01L21/28211H01L21/823487H01L29/0634H01L29/0847H01L29/086H01L29/0878H01L29/1095H01L29/42368
    • A trench MIS device is formed in a P-epitaxial layer that overlies an N-epitaxial layer and an N+ substrate. In one embodiment, the device includes a thick oxide layer at the bottom of the trench and an N-type drain-drift region that extends from the bottom of the trench to the N-epitaxial layer. The thick insulating layer reduces the capacitance between the gate and the drain and therefore improves the ability of the device to operate at high frequencies. Preferably, the drain-drift region is formed at least in part by fabricating spacers on the sidewalls of the trench and implanting an N-type dopant between the sidewall spacers and through the bottom of the trench. The thick bottom oxide layer is formed on the bottom of the trench while the sidewall spacers are still in place. The drain-drift region can be doped more heavily than the conventional “drift region” that is formed in an N-epitaxial layer. Thus, the device has a low on-resistance. The N-epitaxial layer increases the breakdown voltage of the MIS device. In alternative embodiments, the thick bottom oxide layer can be omitted.
    • 沟槽MIS器件形成在覆盖在N外延层和N +衬底上的P外延层中。 在一个实施例中,器件包括在沟槽底部的厚氧化物层和从沟槽的底部延伸到N外延层的N型漏 - 漂移区。 厚的绝缘层减小了栅极和漏极之间的电容,从而提高了器件在高频下工作的能力。 优选地,漏极漂移区域至少部分地通过在沟槽的侧壁上制造间隔物并且在侧壁间隔物之间​​并通过沟槽的底部注入N型掺杂剂而形成。 厚的底部氧化物层形成在沟槽的底部,同时侧壁间隔物仍然在位。 漏极漂移区可以比在N外延层中形成的常规“漂移区”更重的掺杂。 因此,器件具有低导通电阻。 N外延层增加了MIS器件的击穿电压。 在替代实施例中,可以省略厚的底部氧化物层。
    • 5. 发明授权
    • Trench MIS device having implanted drain-drift region and thick bottom oxide
    • 沟槽MIS器件具有植入漏极漂移区域和厚底部氧化物
    • US07291884B2
    • 2007-11-06
    • US10454031
    • 2003-06-04
    • Mohamed N. DarwishKyle W. TerrillJainhai Qi
    • Mohamed N. DarwishKyle W. TerrillJainhai Qi
    • H01L29/76
    • H01L29/7813H01L21/2253H01L21/28185H01L21/28194H01L21/28211H01L21/823487H01L29/0634H01L29/0847H01L29/086H01L29/0878H01L29/1095H01L29/42368
    • A trench MIS device is formed in a P-epitaxial layer that overlies an N-epitaxial layer and an N+ substrate. In one embodiment, the device includes a thick oxide layer at the bottom of the trench and an N-type drain-drift region that extends from the bottom of the trench to the N-epitaxial layer. The thick insulating layer reduces the capacitance between the gate and the drain and therefore improves the ability of the device to operate at high frequencies. Preferably, the drain-drift region is formed at least in part by fabricating spacers on the sidewalls of the trench and implanting an N-type dopant between the sidewall spacers and through the bottom of the trench. The thick bottom oxide layer is formed on the bottom of the trench while the sidewall spacers are still in place. The drain-drift region can be doped more heavily than the conventional “drift region” that is formed in an N-epitaxial layer. Thus, the device has a low on-resistance. The N-epitaxial layer increases the breakdown voltage of the MIS device. In alternative embodiments, the thick bottom oxide layer can be omitted.
    • 沟槽MIS器件形成在覆盖在N外延层和N +衬底上的P外延层中。 在一个实施例中,器件包括在沟槽底部的厚氧化物层和从沟槽的底部延伸到N外延层的N型漏 - 漂移区。 厚的绝缘层减小了栅极和漏极之间的电容,从而提高了器件在高频下工作的能力。 优选地,漏极漂移区域至少部分地通过在沟槽的侧壁上制造间隔物并且在侧壁间隔物之间​​并通过沟槽的底部注入N型掺杂剂而形成。 厚的底部氧化物层形成在沟槽的底部,同时侧壁间隔物仍然在位。 漏极漂移区可以比在N外延层中形成的常规“漂移区”更重的掺杂。 因此,器件具有低导通电阻。 N外延层增加了MIS器件的击穿电压。 在替代实施例中,可以省略厚的底部氧化物层。