会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Nonvolatile semiconductor memory element excellent in charge retention properties and process for producing the same
    • 电荷保持性优异的非挥发性半导体存储元件及其制造方法
    • US07820515B2
    • 2010-10-26
    • US12046763
    • 2008-03-12
    • Masaaki TakataMitsumasa Koyanagi
    • Masaaki TakataMitsumasa Koyanagi
    • H01L21/336
    • H01L21/28273H01L21/3105H01L21/316H01L21/31645H01L29/42332H01L29/66825H01L29/7881
    • A process for producing a nonvolatile semiconductor memory having a mixed or laminated structure of a hardly oxidizable material composed of a hardly oxidizable element having Gibbs' free energy for forming oxide higher than that of Si under the same temperature condition at 1 atm and in temperature range of 0° C. to 1,200° C. and an oxide of an easily oxidizable material composed of an element having Gibbs' free energy for forming oxide lower than that of Si under the same temperature condition at 1 atm in the temperature range and Si. The process includes forming a portion of the hardly oxidizable material and a portion of the oxide by physical forming method and carrying out heat treatment in oxidizing and reducing gas mixture. The ratio of the gases and the temperature are controlled so that the hardly oxidizable material is reduced and the oxide is oxidized in the temperature range.
    • 一种制造非易失性半导体存储器的方法,该非易失性半导体存储器具有在1atm和在温度范围内的相同温度条件下由具有吉布斯自由能的几乎不可氧化的元素组成的几乎不可氧化的材料的混合或层压结构,以形成高于Si的氧化物的氧化物 0℃〜1200℃的温度范围内的容易氧化材料的氧化物以及在相同的温度条件下在1atm的温度范围和Si下由具有吉布斯自由能的元素组成的氧化物,以形成低于Si的氧化物的氧化物。 该方法包括通过物理形成方法形成一部分难以氧化的材料和一部分氧化物,并在氧化和还原气体混合物中进行热处理。 控制气体和温度的比例,使得难以氧化的材料减少,氧化物在温度范围内被氧化。
    • 4. 发明授权
    • Nonvolatile semiconductor memory device having nanoparticles for charge retention
    • 具有用于电荷保留的纳米颗粒的非易失性半导体存储器件
    • US07355238B2
    • 2008-04-08
    • US11003421
    • 2004-12-06
    • Masaaki TakataMitsumasa Koyanagi
    • Masaaki TakataMitsumasa Koyanagi
    • H01L29/76
    • H01L29/42332Y10S977/943
    • A nonvolatile semiconductor memory device including a source region and a drain region formed on a surface of a semiconductor substrate, a channel-forming region formed so as to connect the source region and the drain region or so as to be sandwiched between the source region and the drain region, a tunnel insulating film formed in contact with the channel-forming region, a charge retention layer formed adjacently to the tunnel insulating film, a gate insulating film formed adjacently to the charge retention layer, and a control gate formed adjacently to the gate insulating film. The charge retention layer includes an insulating matrix having, per nonvolatile semiconductor memory device, one conductive nano-particle which is made of at least one single-element substance or chemical compound that functions as a floating gate.
    • 一种非易失性半导体存储器件,包括形成在半导体衬底的表面上的源极区域和漏极区域,形成为连接源极区域和漏极区域的沟道形成区域,以夹在源极区域和源极区域之间, 漏极区域,与沟道形成区域形成的隧道绝缘膜,与隧道绝缘膜相邻形成的电荷保持层,与电荷保持层相邻形成的栅极绝缘膜,以及与栅极绝缘膜相邻形成的控制栅极 栅极绝缘膜。 电荷保持层包括绝缘矩阵,每个非易失性半导体存储器件具有由至少一个用作浮栅的单一元素物质或化合物制成的导电纳米颗粒。
    • 5. 发明申请
    • NONVOLATILE SEMICONDUCTOR MEMORY DEVICE HAVING EXCELLENT CHARGE RETENTION AND MANUFACTURING PROCESS OF THE SAME
    • 具有优异充电保持性及其制造工艺的非挥发性半导体存储器件
    • US20070155099A1
    • 2007-07-05
    • US11685077
    • 2007-03-12
    • Masaaki TakataMitsumasa Koyanagi
    • Masaaki TakataMitsumasa Koyanagi
    • H01L21/336H01L21/3205
    • H01L29/42332Y10S977/943
    • There has been a problem in conventional Si-type floating-gate type nonvolatile semiconductor memory devices that the charge retention characteristic is low due to insufficiently large electron affinity of Si, therefore improvement of the memory performances, such as scaling down of a memory cell and increasing operation speed, have been difficult to be achieved due to the essential problem. In order to solve the above problem, in the nonvolatile semiconductor memory device of the present invention, a material having large work function or large electron affinity or a material having a work function close to that of semiconductor substrate or of a control gate, is employed for a floating gate retaining charges. Further, an amorphous material having small electron affinity for an insulating matrix is used. Further, at a time of deposition of charge retention layer, the supply ratio of the nano-particle material and the insulating matrix material, such as the mixture ratio of materials of both phases in a target in a sputtering method, is adjusted. By these methods, the charge retention characteristic of the floating-gate type nonvolatile semiconductor memory device can be improved, and the above-mentioned problem of the nonvolatile semiconductor memory device can be solved.
    • 在常规的Si型浮栅型非易失性半导体存储器件中存在由于Si的电子亲和力不足而导致的电荷保持特性低的问题,因此存储器性能的改善,例如存储器单元的缩小和 提高运行速度,由于基本问题而难以实现。 为了解决上述问题,在本发明的非易失性半导体存储器件中,使用具有大功函数或大电子亲和性的材料或具有接近半导体衬底或控制栅的功函数的材料 为浮门保留费用。 此外,使用对绝缘基体具有小的电子亲和力的无定形材料。 此外,在电荷保持层的沉积时,调整纳米粒子材料和绝缘基体材料的供给比例,例如溅射法中的靶中的两相的材料的混合比例。 通过这些方法,可以提高浮栅型非易失性半导体存储器件的电荷保持特性,并且可以解决上述非易失性半导体存储器件的问题。
    • 6. 发明申请
    • Nonvolatile semiconductor memory device having excellent charge retention and manufacturing process of the same
    • 非易失性半导体存储器件具有优异的电荷保持率及其制造工艺
    • US20060118853A1
    • 2006-06-08
    • US11003421
    • 2004-12-06
    • Masaaki TakataMitsumasa Koyanagi
    • Masaaki TakataMitsumasa Koyanagi
    • H01L29/76
    • H01L29/42332Y10S977/943
    • There has been a problem in conventional Si-type floating-gate type nonvolatile semiconductor memory devices that the charge retention characteristic is low due to insufficiently large electron affinity of Si, therefore improvement of the memory performances, such as scaling down of a memory cell and increasing operation speed, have been difficult to be achieved due to the essential problem. In order to solve the above problem, in the nonvolatile semiconductor memory device of the present invention, a material having large work function or large electron affinity or a material having a work function close to that of semiconductor substrate or of a control gate, is employed for a floating gate retaining charges. Further, an amorphous material having small electron affinity for an insulating matrix is used. Further, at a time of deposition of charge retention layer, the supply ratio of the nano-particle material and the insulating matrix material, such as the mixture ratio of materials of both phases in a target in a sputtering method, is adjusted. By these methods, the charge retention characteristic of the floating-gate type nonvolatile semiconductor memory device can be improved, and the above-mentioned problem of the nonvolatile semiconductor memory device can be solved.
    • 在常规的Si型浮栅型非易失性半导体存储器件中存在由于Si的电子亲和力不足而导致的电荷保持特性低的问题,因此存储器性能的改善,例如存储器单元的缩小和 增加运行速度,由于基本问题而难以实现。 为了解决上述问题,在本发明的非易失性半导体存储器件中,使用具有大功函数或大电子亲和性的材料或具有接近半导体衬底或控制栅的功函数的材料 为浮门保留费用。 此外,使用对绝缘基体具有小的电子亲和力的无定形材料。 此外,在电荷保持层的沉积时,调整纳米粒子材料和绝缘基体材料的供给比例,例如溅射法中的靶中的两相的材料的混合比例。 通过这些方法,可以提高浮栅型非易失性半导体存储器件的电荷保持特性,并且可以解决上述非易失性半导体存储器件的问题。
    • 7. 发明授权
    • Synthesized silica glass for optical component
    • 用于光学部件的合成石英玻璃
    • US08498056B2
    • 2013-07-30
    • US13367780
    • 2012-02-07
    • Masaaki TakataLong ShaoKei IwataTomonori Ogawa
    • Masaaki TakataLong ShaoKei IwataTomonori Ogawa
    • G02B27/12C03B11/08C03B23/22
    • C03B19/1453C03B2201/04G03F7/70966Y02P40/57
    • The present invention provides a synthetic silica glass for an optical member in which not only a fast axis direction in an optical axis direction is controlled, and a birefringence in an off-axis direction is reduced, but a magnitude of a birefringence in the optical axis direction is controlled to an arbitrary value, such that an average value of a value BR cos2θxy defined from a birefringence BR and a fast axis direction θxy as measured from a parallel direction to the principal optical axis direction is defined as an average birefringence AveBR cos2θxy, and when a maximum value of a birefringence measured from a vertical direction to the principal optical axis direction of the optical member is defined as a maximum birefringence BRmax in an off-axis direction, the following expression (1-1) and expression (2-1) are established: −1.0≦AveBR cos2θxy
    • 本发明提供一种用于光学构件的合成石英玻璃,其不仅控制光轴方向上的快轴方向,并且减少偏轴双折射,而且在光轴上具有双折射的大小 方向被控制为任意值,使得从平行方向到主光轴方向测量的从双折射BR和快轴方向三角形定义的值BR cos2thetaxy的平均值被定义为平均双折射AveBR cos2thetaxy, 并且当将从光学构件的垂直方向到主光轴方向测量的双折射的最大值定义为离轴方向上的最大双折射BRmax时,下列表达式(1-1)和表达式(2- 1)建立:-1.0@AveBR cos2thetaxy <0.0(1-1)0.0 @ BRmax @ 1.0(2-1)。