会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明专利
    • Spatial recognition and grouping of text and graphic
    • 空间识别和文本和图形分组
    • JP2006073000A
    • 2006-03-16
    • JP2005246356
    • 2005-08-26
    • Microsoft Corpマイクロソフト コーポレーション
    • CHELLAPILLA KUMAR HSHILMAN MICHAELVIOLA PAUL A
    • G06K9/62G06K9/00
    • G06K9/726G06K9/00402G06K9/344G06K9/4614G06K2209/01
    • PROBLEM TO BE SOLVED: To provide a systematic means for recognizing text and/or graphics by using spatial relationships. SOLUTION: By this, a sketched shape is augmented with its symbolic meaning, and numerous features including smart editing, beautification, and interactive simulation of visual languages are made possible. A spatial recognition method obtains a search-based optimization over a large space of possible groupings from simultaneously grouped and recognized sketched shapes. The optimization utilizes a classifier that assigns a class label to a collection of strokes. The overall grouping optimization assumes the properties of the classifier so that if the classifier is scale and rotation invariant, the optimization will be as well. Instances of the present invention employ a variant of AdaBoost to facilitate in recognizing/classifying symbols. Instances of the present invention employ dynamic programming and/or A-star search to perform optimization. COPYRIGHT: (C)2006,JPO&NCIPI
    • 要解决的问题:提供一种通过使用空间关系识别文本和/或图形的系统手段。

      解决方案:通过这一点,草图形状以其符号意义来增强,并且可以实现许多功能,包括智能编辑,美化和视觉语言的交互式模拟。 空间识别方法从同时分组和识别的草图形状的可能分组的大空间中获得基于搜索的优化。 优化利用了将类标签分配给笔画集合的分类器。 总体分组优化假设分类器的属性,以便如果分类器是缩放和旋转不变量,则优化也将同样。 本发明的实施例采用AdaBoost的变体来促进识别/分类符号。 本发明的实施例采用动态规划和/或A星搜索来执行优化。 版权所有(C)2006,JPO&NCIPI

    • 5. 发明申请
    • GRAMMATICAL PARSING OF DOCUMENT VISUAL STRUCTURES
    • 文件视觉结构的特征分析
    • WO2007005937A2
    • 2007-01-11
    • PCT/US2006026140
    • 2006-06-30
    • MICROSOFT CORP
    • VIOLA PAUL ASHILMAN MICHAEL
    • G06K9/72G06F17/20G06K9/34
    • G06K9/726G06F17/271G06K2209/01
    • A two-dimensional representation of a document is leveraged to extract a hierarchical structure that facilitates recognition of the document. The visual structure is grammatically parsed utilizing two-dimensional adaptations of statistical parsing algorithms. This allows recognition of layout structures (e.g., columns, authors, titles, footnotes, etc.) and the like such that structural components of the document can be accurately interpreted. Additional techniques can also be employed to facilitate document layout recognition. For example, grammatical parsing techniques that utilize machine learning, parse scoring based on image representations, boosting techniques, and/or "fast features" and the like can be employed to facilitate in document recognition.
    • 利用文档的二维表示来提取便于识别文档的层次结构。 使用统计解析算法的二维适应来语法解析视觉结构。 这允许识别布局结构(例如,列,作者,标题,脚注等)等,使得可以准确地解释文档的结构组件。 还可以采用附加技术来促进文档布局识别。 例如,可以采用利用机器学习,基于图像表示的分析评分,增强技术和/或“快速特征”等的语法解析技术,以促进文档识别。