会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Efficient exploitation of model complementariness by low confidence re-scoring in automatic speech recognition
    • 通过自动语音识别中的低置信度重新评估模型互补性的高效利用
    • US09037463B2
    • 2015-05-19
    • US13518409
    • 2010-05-27
    • Daniel WillettVenkatesh Nagesha
    • Daniel WillettVenkatesh Nagesha
    • G10L15/04G10L15/14G10L15/183G10L15/32
    • G10L15/142G10L15/183G10L15/32
    • A method for speech recognition is described that uses an initial recognizer to perform an initial speech recognition pass on an input speech utterance to determine an initial recognition result corresponding to the input speech utterance, and a reliability measure reflecting a per word reliability of the initial recognition result. For portions of the initial recognition result where the reliability of the result is low, a re-evaluation recognizer is used to perform a re-evaluation recognition pass on the corresponding portions of the input speech utterance to determine a re-evaluation recognition result corresponding to the re-evaluated portions of the input speech utterance. The initial recognizer and the re-evaluation recognizer are complementary so as to make different recognition errors. A final recognition result is determined based on the re-evaluation recognition result if any, and otherwise based on the initial recognition result.
    • 描述了一种用于语音识别的方法,其使用初始识别器对输入语音话语执行初始语音识别,以确定对应于输入语音话语的初始识别结果,以及反映初始识别的每字可靠性的可靠性度量 结果。 对于结果可靠性低的初始识别结果的部分,使用重新评估识别器对输入语音话语的相应部分执行重新评估识别,以确定对应于 重新评估输入语音话语的部分。 初始识别器和重新评估识别器是互补的,以便产生不同的识别错误。 根据重新评估识别结果(如果有的话),否则根据初始识别结果确定最终识别结果。
    • 3. 发明授权
    • Channel normalization using recognition feedback
    • 频道归一化使用识别反馈
    • US08768695B2
    • 2014-07-01
    • US13495509
    • 2012-06-13
    • Yun TangVenkatesh Nagesha
    • Yun TangVenkatesh Nagesha
    • G10L19/14G10L15/00
    • G10L15/20G10L15/065G10L21/0208
    • A computer-implemented arrangement is described for performing cepstral mean normalization (CMN) in automatic speech recognition. A current CMN function is stored in a computer memory as a previous CMN function. The current CMN function is updated based on a current audio input to produce an updated CMN function. The updated CMN function is used to process the current audio input to produce a processed audio input. Automatic speech recognition of the processed audio input is performed to determine representative text. If the audio input is not recognized as representative text, the updated CMN function is replaced with the previous CMN function.
    • 描述了用于在自动语音识别中执行倒谱平均归一化(CMN)的计算机实现的布置。 当前CMN功能作为先前的CMN功能存储在计算机存储器中。 基于当前音频输入更新当前CMN功能以产生更新的CMN功能。 更新的CMN功能用于处理当前音频输入以产生经处理的音频输入。 执行经处理的音频输入的自动语音识别以确定代表性的文本。 如果音频输入不被识别为代表性文本,则更新的CMN功能被替换为先前的CMN功能。
    • 6. 发明申请
    • Channel Normalization Using Recognition Feedback
    • 信道归一化使用识别反馈
    • US20130339014A1
    • 2013-12-19
    • US13495509
    • 2012-06-13
    • Yun TangVenkatesh Nagesha
    • Yun TangVenkatesh Nagesha
    • G10L15/26
    • G10L15/20G10L15/065G10L21/0208
    • A computer-implemented arrangement is described for performing cepstral mean normalization (CMN) in automatic speech recognition. A current CMN function is stored in a computer memory as a previous CMN function. The current CMN function is updated based on a current audio input to produce an updated CMN function. The updated CMN function is used to process the current audio input to produce a processed audio input. Automatic speech recognition of the processed audio input is performed to determine representative text. If the audio input is not recognized as representative text, the updated CMN function is replaced with the previous CMN function.
    • 描述了用于在自动语音识别中执行倒谱平均归一化(CMN)的计算机实现的布置。 当前CMN功能作为先前的CMN功能存储在计算机存储器中。 基于当前音频输入更新当前CMN功能以产生更新的CMN功能。 更新的CMN功能用于处理当前音频输入以产生经处理的音频输入。 执行经处理的音频输入的自动语音识别以确定代表性的文本。 如果音频输入不被识别为代表性文本,则更新的CMN功能被替换为先前的CMN功能。
    • 7. 发明申请
    • Efficient Exploitation of Model Complementariness by Low Confidence Re-Scoring in Automatic Speech Recognition
    • 自动语音识别中低信度重新评估模型互补性的有效开发
    • US20120259627A1
    • 2012-10-11
    • US13518409
    • 2010-05-27
    • Daniel WillettVenkatesh Nagesha
    • Daniel WillettVenkatesh Nagesha
    • G10L15/00
    • G10L15/142G10L15/183G10L15/32
    • A method for speech recognition is described that uses an initial recognizer to perform an initial speech recognition pass on an input speech utterance to determine an initial recognition result corresponding to the input speech utterance, and a reliability measure reflecting a per word reliability of the initial recognition result. For portions of the initial recognition result where the reliability of the result is low, a re-evaluation recognizer is used to perform a re-evaluation recognition pass on the corresponding portions of the input speech utterance to determine a re-evaluation recognition result corresponding to the re-evaluated portions of the input speech utterance. The initial recognizer and the re-evaluation recognizer are complementary so as to make different recognition errors. A final recognition result is determined based on the re-evaluation recognition result if any, and otherwise based on the initial recognition result.
    • 描述了一种用于语音识别的方法,其使用初始识别器对输入语音话语执行初始语音识别,以确定对应于输入语音话语的初始识别结果,以及反映初始识别的每字可靠性的可靠性度量 结果。 对于结果可靠性低的初始识别结果的部分,使用重新评估识别器对输入语音话语的相应部分执行重新评估识别,以确定对应于 重新评估输入语音话语的部分。 初始识别器和重新评估识别器是互补的,以便产生不同的识别错误。 根据重新评估识别结果(如果有的话),否则根据初始识别结果确定最终识别结果。