会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • X-ray tube having increased cooling capabilities
    • X射线管具有增加的冷却能力
    • US06496564B2
    • 2002-12-17
    • US09836306
    • 2001-04-17
    • Michael J. PriceMark O. DerakhshanWayne F. BlockCharles B. Kendall
    • Michael J. PriceMark O. DerakhshanWayne F. BlockCharles B. Kendall
    • H01J3510
    • H01J35/105H01J2235/1208
    • An x-ray system with an x-ray generating device having improved heat dissipation capabilities. The x-ray generating device includes an x-ray tube mounted in a casing holding a circulating, cooling medium. According to the present invention, the x-ray generating device includes a support mechanism mounted within the x-ray generating device in a manner for adjustably positioning, relative to the casing, the focal spot alignment path of generated x-rays. Additionally, the x-ray generating device includes a cooling mechanism having an inlet chamber for channeling the cooling medium within the support mechanism. Additionally, a cooling stem may be positioned within the inlet chamber to increase the heat exchange surface area exposed to the cooling medium. Thus, the present invention advantageously increases the heat dissipation capability of the x-ray generating device.
    • 具有X射线产生装置的X射线系统具有改进的散热能力。 X射线产生装置包括安装在保持循环的冷却介质的壳体中的X射线管。 根据本发明,X射线产生装置包括以相对于壳体可调节地定位所产生的X射线的焦点对准路径的方式安装在x射线产生装置内的支撑机构。 另外,X射线产生装置包括具有用于将冷却介质引导到支撑机构内的入口室的冷却机构。 此外,冷却杆可以位于入口室内以增加暴露于冷却介质的热交换表面积。 因此,本发明有利地增加了x射线产生装置的散热能力。
    • 2. 发明授权
    • X-ray tube having increased cooling capabilities
    • X射线管具有增加的冷却能力
    • US06249569B1
    • 2001-06-19
    • US09219219
    • 1998-12-22
    • Michael J. PriceMark O. DerakhshanWayne F. BlockCharles B. Kendall
    • Michael J. PriceMark O. DerakhshanWayne F. BlockCharles B. Kendall
    • H01J3510
    • H01J35/105H01J2235/1208
    • An x-ray system with an x-ray generating device having improved heat dissipation capabilities. The x-ray generating device has an x-ray tube mounted in a casing holding a circulating, cooling medium. According to the present invention, the x-ray generating device includes a support mechanism mounted within the x-ray generating device in a manner for adjustably positioning, relative to the casing, the focal spot alignment path of generated x-rays. Additionally, the x-ray generating device includes a cooling mechanism having an inlet chamber for channeling the cooling medium within the support mechanism. Additionally, a cooling stem may be positioned within the inlet chamber to increase the heat exchange surface area exposed to the cooling medium. Thus, the present invention advantageously increases the heat dissipation capability of the x-ray generating device.
    • 具有X射线产生装置的X射线系统具有改进的散热能力。 X射线产生装置具有安装在保持循环的冷却介质的壳体中的x射线管。 根据本发明,X射线产生装置包括以相对于壳体可调节地定位所产生的X射线的焦点对准路径的方式安装在x射线产生装置内的支撑机构。 另外,X射线产生装置包括具有用于将冷却介质引导到支撑机构内的入口室的冷却机构。 此外,冷却杆可以位于入口室内以增加暴露于冷却介质的热交换表面积。 因此,本发明有利地增加了x射线产生装置的散热能力。
    • 4. 发明授权
    • X-ray tube coolant volume control system
    • X射线管冷却液体积控制系统
    • US07001070B2
    • 2006-02-21
    • US10707710
    • 2004-01-06
    • Charles B. KendallClarence L. Gordon, III
    • Charles B. KendallClarence L. Gordon, III
    • H01J35/10
    • H05G1/04H05G1/025
    • An imaging tube coolant volume control system (14) for an imaging tube (18) includes a compensation tank (80) that is configured to fluidically couple an imaging tube cooling circuit (11). The compensation tank (80) includes a cooling fluid (17) and a compensation-dividing member (100). The member (100) is adjustable in response to the change in volume of the cooling fluid (17). An overflow vessel (82) is fluidically coupled to the compensation tank (80). A compensation valve (86) is coupled between the compensation tank (80) and the overflow vessel (82) and allows flow of the cooling fluid between the compensation tank (80) and the overflow vessel (82) when pressure of the cooling fluid (17) is greater than or equal to a first predetermined pressure level.
    • 用于成像管(18)的成像管冷却剂体积控制系统(14)包括被配置为流体耦合成像管冷却回路(11)的补偿罐(80)。 补偿罐(80)包括冷却流体(17)和补偿分配部件(100)。 构件(100)可响应于冷却流体(17)的体积变化而调节。 溢流容器(82)流体地联接到补偿罐(80)。 补偿阀(86)联接在补偿罐(80)和溢流容器(82)之间,并且当冷却流体的压力(...)的压力允许冷却流体在补偿罐(80)和溢流容器(82)之间流动 17)大于或等于第一预定压力水平。
    • 5. 发明授权
    • Evacuated high voltage connector
    • 抽真空的高压连接器
    • US06471522B2
    • 2002-10-29
    • US09751878
    • 2000-12-28
    • Charles B. Kendall
    • Charles B. Kendall
    • H01R1360
    • H01R13/53
    • A connector between an x-ray tube and high voltage source. An epoxy-filled housing is connected to the casing or housing of an x-ray tube or vacuum vessel. A high conductivity silicone gasket is positioned between the ceramic insulator of the x-ray tube and the epoxy material in the housing. Air is evacuated in the joint between the connector housing and x-ray tube vessel and a vacuum created therein. Appropriate seals are positioned maintaining the integrity of the vacuum. Spring-loaded attachment bolts are also utilized to secure the connector housing and vacuum vessel casing together.
    • X射线管和高压源之间的连接器。 环氧树脂填充的外壳连接到x射线管或真空容器的外壳或外壳。 高导电性硅树脂垫片位于x射线管的陶瓷绝缘体和外壳中的环氧树脂材料之间。 空气在连接器壳体和X射线管容器之间的接头中抽真空,并在其中产生真空。 定位适当的密封件保持真空的完整性。 弹簧加载的连接螺栓也用于将连接器壳体和真空容器壳体固定在一起。
    • 6. 发明授权
    • Aluminum x-ray transmissive window for an x-ray tube vacuum vessel
    • 用于X射线管真空容器的铝x射线透射窗
    • US6118852A
    • 2000-09-12
    • US109753
    • 1998-07-02
    • Carey S. RogersCharles B. Kendall
    • Carey S. RogersCharles B. Kendall
    • G21K5/00H01J5/22H01J35/18H01J5/18
    • H01J5/22H01J35/18H01J2235/183
    • An x-ray transmissive window assembly for use in metal framed x-ray tubes is formed of at least two layers of metal joined by explosion welding. An x-ray transmissive window, preferably comprising aluminum or an aluminum alloy, is joined to a transition layer, which is typically the same material as the x-ray tube vacuum vessel, to form the transmissive window assembly. The transmissive window is formed in the assembly by removing the transition layer material from the central region. A weld flange is prepared by removing the x-ray transmissive window material from the periphery of the assembly. The assembly is then welded into the x-ray tube vacuum vessel using traditional techniques. In another embodiment, a multi-layered window assembly comprises an x-ray transmissive window, a transition layer weldable to an x-ray tube vacuum vessel, and an intermediate layer that acts as a mask or aperture to attenuate peripheral radiation and clearly define the edges of the transmitted x-ray beam. The intermediate layer also acts as a diffusion barrier that prevents the formation of a brittle intermetallic layer between the transmissive window and transition layers during high temperature operation. Additionally, according to the present invention, an x-ray system comprising the above-described window assembly is disclosed.
    • 用于金属框架X射线管的x射线透射窗组件由至少两层通过爆炸焊接接合的金属形成。 优选地包括铝或铝合金的x射线透射窗被连接到通常与x射线管真空容器相同的材料的过渡层,以形成透射窗组件。 通过从中心区域去除过渡层材料,在组件中形成透射窗。 通过从组件的周边去除x射线透射窗材料来制备焊接凸缘。 然后使用传统技术将组件焊接到x射线管真空容器中。 在另一个实施例中,多层窗口组件包括x射线透射窗,可焊接到x射线管真空容器的过渡层,以及充当掩模或孔以衰减外围辐射的中间层,并且清楚地界定 透射X射线束的边缘。 中间层还充当扩散阻挡层,其防止在高温操作期间在透射窗和过渡层之间形成脆性金属间化合物层。 另外,根据本发明,公开了一种包括上述窗组件的X射线系统。
    • 10. 发明授权
    • Low angle high speed image tube
    • 低角度高速影像管
    • US06639970B1
    • 2003-10-28
    • US10065390
    • 2002-10-11
    • Charles B. Kendall
    • Charles B. Kendall
    • H01J3500
    • H01J35/26H01J35/106H01J2235/1279
    • An imaging tube (51) is provided including a cathode (58) and an anode (60). The cathode (58) includes an emission surface (99), which emits a plurality of electrons along an emission axis (56). The anode (60) includes a body (76) having a track (58) on a peripheral section (78) of the body (76). The plurality of electrons are directed to impinge on the track (58) at an impingement angle &agr; approximately equal to or between 15° and 25° relative to the emission axis (56) and are converted into x-rays. A method of generating x-rays within the imaging tube is also provided.
    • 提供了包括阴极(58)和阳极(60)的成像管(51)。 阴极(58)包括沿着发射轴(56)发射多个电子的发射表面(99)。 阳极(60)包括在本体(76)的周边部分(78)上具有轨道(58)的主体(76)。 多个电子被引导以相对于发射轴(56)大约等于或在15°和25°之间的冲击角α撞击在轨道(58)上,并被转换成x射线。 还提供了一种在成像管内产生X射线的方法。