会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Etch-selective bonding layer for hybrid photonic devices
    • 用于混合光子器件的蚀刻选择性结合层
    • US08774582B1
    • 2014-07-08
    • US13461634
    • 2012-05-01
    • Matthew Jacob-MitosGregory Alan FishAlexander W. Fang
    • Matthew Jacob-MitosGregory Alan FishAlexander W. Fang
    • G02B6/10G02B6/00H01L21/76H01L21/46H01L21/30
    • H01S5/22G02F1/025G02F2201/07G02F2202/102G02F2202/105H01L21/187H01S5/3213H01S5/3214
    • “Hybrid photonic devices” describe devices wherein the optical portion—i.e., the optical mode, comprises both the silicon and III-V semiconductor regions, and thus the refractive index of the semiconductor materials and the refractive index of the bonding layer region directly effects the optical function of the device. Prior art devices utilize an optically compliant layer that is the same material as the III-V substrate; however, during the final sub-process of the bonding process, the substrates must be removed by acids. These acids can etch into the bonding layer, causing imperfections to propagate at the interface of the bonded material, adversely affecting the optical mode shape and propagation loss of the device.Embodiments of the invention utilize a semiconductor etch-selective bonding layer that is not affected by the final stages of the bonding process (e.g., substrate removal), and thus protects the bonding interface layer from being affected.
    • “混合光子器件”描述了其中光学部分即光学模式包括硅和III-V半导体区域的器件,因此半导体材料的折射率和结合层区域的折射率直接影响 光学功能的设备。 现有技术的装置利用与III-V衬底相同材料的光学柔顺层; 然而,在接合过程的最后一个子过程中,基底必须被酸去除。 这些酸可以蚀刻到结合层中,导致缺陷在接合材料的界面处传播,不利地影响器件的光学模式形状和传播损耗。 本发明的实施例利用不受接合工艺的最后阶段(例如,衬底移除)的影响的半导体蚀刻选择性接合层,并且因此保护接合界面层免受影响。
    • 2. 发明授权
    • High index bonding layer for hybrid photonic devices
    • 用于混合光子器件的高折射率键合层
    • US08358897B1
    • 2013-01-22
    • US13450332
    • 2012-04-18
    • Gregory Alan FishMatthew Jacob-Mitos
    • Gregory Alan FishMatthew Jacob-Mitos
    • G02B6/10G02B6/00
    • G02F1/025G02B6/122H01S5/021H01S5/0215
    • Embodiments of the invention are hybrid photonic devices including a first semiconductor slab (i.e. region) comprising a silicon material and a second semiconductor slab, comprising a III-V material, above and partially overlapping the first semiconductor slab to create a lateral overlap region. A bonding layer may be formed on the second semiconductor slab to enable the bonding of the first and second semiconductor slabs at the lateral overlap region. An optical waveguide is formed to be included in the lateral overlap region and comprising the silicon semiconductor material, the III-V semiconductor material and the bonding layer. Thus, in embodiments of the invention the bonding layer comprises a material with a refractive index of at least 2.0 so as to not affect the optical mode shape or propagation loss of the hybrid electro-optical device.
    • 本发明的实施例是包括第一半导体板(即,区域)的混合光子器件,其包括硅材料和第二半导体板,其包含III-V族材料,在第一半导体板上方并部分地重叠以形成横向重叠区域。 可以在第二半导体板上形成接合层,以便能够在横向重叠区域处接合第一和第二半导体板。 光波导形成为包括在横向重叠区域中并且包括硅半导体材料,III-V半导体材料和接合层。 因此,在本发明的实施例中,结合层包括折射率至少为2.0的材料,以便不影响混合电光器件的光学模式形状或传播损耗。
    • 6. 发明申请
    • TUNABLE LASER WITH INTEGRATED WAVELENGTH REFERENCE
    • 具有集成波长参考的可激光激光
    • US20130083815A1
    • 2013-04-04
    • US13249753
    • 2011-09-30
    • ALEXANDER W. FANGGregory Alan FishJohn Hutchinson
    • ALEXANDER W. FANGGregory Alan FishJohn Hutchinson
    • H01S3/10
    • H01S5/068H01S3/0014H01S3/0637H01S3/0675H01S3/10015H01S3/10023H01S3/1003H01S3/1055H01S3/1305H01S5/021H01S5/02453H01S5/026H01S5/0265H01S5/0612H01S5/1028H01S5/1209H01S5/142
    • In the prior art, tunable lasers utilizing silicon-based tunable ring filters and III-V semiconductor-based gain regions required the heterogeneous integration of independently formed silicon and III-V semiconductor based optical elements, resulting in large optical devices requiring a complex manufacturing process (e.g., airtight packaging to couple the devices formed on different substrates, precise alignment for the elements, etc.). Embodiments of the invention eliminate the need for bulk optical elements and hermetic packaging, via the use of hybridized III-V/silicon gain regions and silicon optical components, such as silicon wavelength filters and silicon wavelength references, thereby reducing the size and manufacturing complexity of tunable lasing devices. For example, embodiments of the invention may utilize hybridized III-V/silicon gain regions with ring filters on silicon form a tunable laser with efficient gain from the III-V region, while providing wide tunability, efficient tunability, and narrow linewidth due to the nature of the silicon rings.
    • 在现有技术中,使用基于硅的可调谐环形滤波器和基于III-V半导体的增益区域的可调谐激光器需要独立形成的基于硅和III-V半导体的光学元件的异质集成,导致需要复杂制造工艺的大型光学器件 (例如,密封包装以联接形成在不同基底上的装置,元件的精确对准等)。 本发明的实施例通过使用杂化的III-V /硅增益区域和诸如硅波长滤波器和硅波长参考的硅光学组件来消除对体光学元件和气密封装的需要,从而减小了尺寸和制造复杂度 可调谐激光装置。 例如,本发明的实施例可以利用具有硅上的环形滤波器的混合III-V /硅增益区域形成具有来自III-V区域的有效增益的可调谐激光器,同时提供宽的可调谐性,有效的可调谐性以及由于 硅环的性质。
    • 8. 发明授权
    • Heterogeneous microwave photonic circuits
    • 异质微波光子电路
    • US09166678B1
    • 2015-10-20
    • US13605658
    • 2012-09-06
    • Gregory Alan FishVolkan KamanAnand Ramaswamy
    • Gregory Alan FishVolkan KamanAnand Ramaswamy
    • H04B10/00H04B10/11
    • H04B10/00H04B10/11H04B2210/006
    • Embodiments of the invention describe (M)MPICs, which include RF processing components and heterogeneous silicon photonic components that include a first region of silicon material and a second region of non-silicon material with high electro-optic efficiency (e.g., III-V material). Said heterogeneous silicon components are fabricated from the silicon and non-silicon material, and therefore may be interconnected via silicon/non-silicon waveguides formed from the above described regions of silicon/non-silicon material. The effect of interconnecting these components via said optical waveguides is that an RF signal may be processed using photonic components consistent with the size of an MMIC, without the need for any optical fibers; therefore, embodiments of the invention describe a chip scale microwave IC that has the broad optical bandwidth of photonics without any optical interfaces to fiber. Furthermore, in some embodiments, the RF processing components, heterogeneous photonic components, and control circuitry may be included in the same chip-scale package.
    • 本发明的实施方案描述了(M)MPIC,其包括RF处理组件和包括硅材料的第一区域和具有高电光效率的非硅材料的第二区域(例如III-V材料)的异质硅光子组件 )。 所述异质硅元件由硅和非硅材料制成,因此可以通过硅/非硅材料的上述区域形成的硅/非硅波导来互连。 通过所述光波导将这些部件互连的效果是可以使用与MMIC的尺寸一致的光子分量来处理RF信号,而不需要任何光纤; 因此,本发明的实施例描述了一种芯片级微波IC,其具有光纤的宽的光学带宽,而没有光纤的任何光接口。 此外,在一些实施例中,RF处理组件,异质光子组件和控制电路可以包括在相同的芯片级封装中。
    • 10. 发明授权
    • Heterogeneous waveguide integrated optical isolator and circulator utilizing one or more optical grating couplers
    • 使用一个或多个光栅耦合器的异质波导集成光隔离器和循环器
    • US08660391B1
    • 2014-02-25
    • US13249804
    • 2011-09-30
    • Gregory Alan Fish
    • Gregory Alan Fish
    • G02B6/00G02B6/34G02F1/01H04B10/17H04J14/02
    • G02B6/34B82Y20/00G02B6/1228G02B6/124G02B6/305G02F1/0955G02F2201/302
    • Embodiments of the invention utilize optical structures created by processes in the wafer fabrication foundry to form optical isolators and circulators. Grating coupling structures are utilized to couple light having a chosen polarization component into free space through non-reciprocal rotation material; said light is captured by another set of grating coupling structures after experiencing a 45 degree rotation of the polarization. By non-reciprocally rotating the polarization, the input and output ports of the optical isolator will be different depending on the direction of the light propagation.The amount of non-reciprocal rotation material utilized by embodiments of the invention may be small, and the grating coupling structures may be efficiently made to couple to each other as their field profiles may be matched and their position may be precisely defined by lithographic means.
    • 本发明的实施例利用由晶片制造代工厂中的工艺产生的光学结构来形成光学隔离器和循环器。 光栅耦合结构用于将具有选定的偏振分量的光通过不可逆旋转材料耦合到自由空间中; 所述光在经历45度旋转偏振之后被另一组光栅耦合结构俘获。 通过不相互旋转极化,光隔离器的输入和输出端口将根据光传播的方向而不同。 由本发明的实施例使用的不可逆旋转材料的量可以很小,并且可以有效地使光栅耦合结构彼此耦合,因为它们的场分布可以匹配,并且它们的位置可以由光刻装置精确地限定。