会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • Current-perpendicular-to-the-plane (CPP) magnetoresistive sensor with antiparallel-free layer structure and low current-induced noise
    • 具有反平行自由层结构和低电流感应噪声的电流垂直平面(CPP)磁阻传感器
    • US07957107B2
    • 2011-06-07
    • US12502764
    • 2009-07-14
    • Matthew J. CareyJeffrey R. ChildressStefan MaatNeil Smith
    • Matthew J. CareyJeffrey R. ChildressStefan MaatNeil Smith
    • G11B5/39
    • G01R33/093B82Y10/00B82Y25/00G11B5/3912G11B5/3932G11B2005/3996
    • A current-perpendicular-to-the-plane (CPP) magnetoresistive sensor has an antiparallel free (APF) structure as the free layer and a specific direction for the applied bias or sense current. The (APF) structure has a first free ferromagnetic (FL1), a second free ferromagnetic layer (FL2), and an antiparallel (AP) coupling (APC) layer that couples FL1 and FL2 together antiferromagnetically with the result that FL1 and FL2 have substantially antiparallel magnetization directions and rotate together in the presence of a magnetic field. The thickness of FL1 is preferably greater than the spin-diffusion length of the electrons in the FL1 material. The minimum thickness for FL2 is a thickness resulting in a FL2 magnetic moment equivalent to at least 10 Å Ni80Fe20 and preferably to at least 15 Å Ni80Fe20. The CPP sensor operates specifically with the conventional sense current (opposite the electron current) directed from the pinned ferromagnetic layer to the APF structure, which results in suppression of current-induced noise.
    • 电流垂直平面(CPP)磁阻传感器具有作为自由层的反向平行自由(APF)结构和施加的偏置或感测电流的特定方向。 (APF)结构具有第一自由铁磁(FL1),第二自由铁磁层(FL2)和反FL-FL2与FL2耦合的反并联(AP)耦合(APC)层,其结果是FL1和FL2具有实质上 反平行磁化方向,并且在存在磁场的情况下一起旋转。 FL1的厚度优选大于FL1材料中的电子的自旋扩散长度。 FL2的最小厚度是导致等于至少10埃NiFeFe 2的FL2磁矩并且优选至少为15埃的Ni38Fe20的厚度。 CPP传感器与从钉扎铁磁层引导到APF结构的常规感测电流(与电子电流相反)特别地工作,这导致电流引起的噪声的抑制。
    • 7. 发明授权
    • Current-perpendicular-to-the-plane (CPP) magnetoresistive sensor with improved antiparallel-pinned structure
    • 电流垂直平面(CPP)磁阻传感器具有改进的反平行销钉结构
    • US07289304B2
    • 2007-10-30
    • US10977300
    • 2004-10-29
    • Matthew J. CareyJeffrey R. ChildressStefan Maat
    • Matthew J. CareyJeffrey R. ChildressStefan Maat
    • G11B5/33G11B5/127
    • G01R33/093B82Y25/00G11B5/3906
    • A current-perpendicular-to-the-plane spin-valve (CPP-SV) magnetoresistive sensor has an improved antiparallel (AP) pinned structure. The AP-pinned structure has two ferromagnetic layers separated by a nonmagnetic antiparallel coupling (APC) layer and with their magnetization directions oriented antiparallel. One of the ferromagnetic layers in the AP-pinned structure is the reference layer in contact with the CPP-SV sensor's nonmagnetic electrically conducting spacer layer. In the improved AP-pinned structure each of the ferromagnetic layers has a thickness greater than 30 Å, preferably greater than approximately 50 Å, and the APC layer is either Ru or Ir with a thickness less than 7 Å, preferably about 5 Å or less. The ultrathin APC layer, especially if formed of iridium (Ir), provides significant coupling strength to allow the thick ferromagnetic layers to retain their magnetization directions in a stable antiparallel orientation.
    • 电流垂直于平面的自旋阀(CPP-SV)磁阻传感器具有改进的反平行(AP)钉扎结构。 AP钉扎结构具有由非磁性反平行耦合(APC)层分离并且其磁化方向反平行取向的两个铁磁层。 AP钉扎结构中的一个铁磁层是与CPP-SV传感器的非磁性导电间隔层接触的参考层。 在改进的AP钉扎结构中,每个铁磁层的厚度大于30埃,优选大于约400埃,APC层是厚度小于7埃,优选约5埃或更小的Ru或Ir 。 超薄APC层,特别是如果由铱(Ir)形成,则提供显着的耦合强度,以使厚的铁磁层保持其稳定的反向平行取向的磁化方向。
    • 9. 发明申请
    • TUNNELING MAGNETORESISTIVE (TMR) READ HEAD WITH LOW MAGNETIC NOISE
    • TONNELING MAGNETORESISTIVE(TMR)阅读头与低磁性噪音
    • US20110043950A1
    • 2011-02-24
    • US12545776
    • 2009-08-21
    • Matthew J. CareyJeffrey R. ChildressStefan Maat
    • Matthew J. CareyJeffrey R. ChildressStefan Maat
    • G11B5/127
    • G11B5/3909B82Y10/00B82Y25/00G01R33/098G11B5/3906H01L43/08H01L43/10
    • A tunneling magnetoresistance (TMR) device, like a TMR read head for a magnetic recording disk drive, has low magnetic damping, and thus low mag-noise, as a result of the addition of a ferromagnetic backing layer to the ferromagnetic free layer. The backing layer is a material with a low Gilbert damping constant or parameter α, the well-known dimensionless coefficient in the Landau-Lifshitz-Gilbert equation. The backing layer may have a thickness such that it contributes up to two-thirds of the total moment/area of the combined free layer and backing layer. The backing layer may be formed of a material having a composition selected from (CoxFe(100-x))(100-y)Xy, (Co2Mn)(100-y)Xy and (Co2FexMn(1-x))(100-y)Xy, where X is selected from Ge, Al and Si, and (Co2Fe)(100-y)Aly, where y is in a range that results in a low damping constant for the material.
    • 隧道磁阻(TMR)器件,如磁记录盘驱动器的TMR读头,由于向铁磁性自由层添加铁磁背衬层,所以具有较低的磁阻尼,因而具有较低的磁场噪声。 背衬层是具有低吉尔伯特阻尼常数或参数α的材料,Landau-Lifshitz-Gilbert方程中众所周知的无量纲系数。 背衬层可以具有使得其贡献高达组合的自由层和背衬层的总矩/面积的三分之二的厚度。 背衬层可以由具有选自(CoxFe(100-x))(100-y)Xy,(Co2Mn)(100-y)Xy和(Co2FexMn(1-x))(100- y)Xy,其中X选自Ge,Al和Si,和(Co 2 Fe)(100-y)Aly,其中y在导致材料的阻尼常数低的范围内。
    • 10. 发明申请
    • MAGNETIC FIELD SENSING SYSTEM USING SPIN-TORQUE DIODE EFFECT
    • 使用旋转二极管效应的磁场感应系统
    • US20100033881A1
    • 2010-02-11
    • US12188183
    • 2008-08-07
    • Matthew J. CareyJeffrey R. ChildressStefan Maat
    • Matthew J. CareyJeffrey R. ChildressStefan Maat
    • G11B5/33
    • G11B5/3909B82Y10/00B82Y25/00G01R33/098G11B5/3932G11B2005/3996H01F10/3259H01F10/3286H03B15/006
    • A magnetic field sensing system with a current-perpendicular-to-the-plane (CPP) sensor, like that used for giant magnetoresistive (GMR) and tunneling magnetoresistive (TMR) spin-valve (SV) sensors, operates in a mode different from conventional GMR-SV and TMR-SV systems. An alternating-current (AC) source operates at a fixed selected frequency and directs AC perpendicularly through the layers of the CPP sensor, with the AC amplitude being high enough to deliberately induce a spin-torque in the CPP sensor's free layer. The AC-induced spin-torque at the selected frequency causes oscillations in the magnetization of the free layer that give rise to a DC voltage signal VDC. VDC is a direct result of only the oscillations induced in the free layer. The value of VDC will change in response to the magnitude of the external magnetic field being sensed and as the free layer is driven in and out of resonance with the AC. The DC voltage resulting from AC-induced spin-torque oscillations of the free layer magnetization represents the actual magnetoresistive signal.
    • 与用于巨磁阻(GMR)和隧道磁阻(TMR)自旋阀(SV)传感器的电流 - 垂直平面(CPP)传感器的磁场感测系统以不同于 常规GMR-SV和TMR-SV系统。 交流(AC)源以固定的选定频率工作,并直接通过CPP传感器的层引导AC,AC振幅足够高以故意诱导CPP传感器自由层中的自旋扭矩。 所选频率下的交流感应自旋转矩引起自由层的磁化振动,产生直流电压信号VDC。 VDC是仅在自由层中引起的振荡的直接结果。 VDC的值将响应于被感测的外部磁场的大小而变化,并且自由层被驱动进入和退出与AC谐振。 由自由层磁化的交流感应自旋转矩振荡产生的直流电压表示实际磁阻信号。