会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • System and method for the aggregation of 10GBASE-R signals into pseudo 100GBASE-R signals
    • 将10GBASE-R信号聚合成伪100GBASE-R信号的系统和方法
    • US08761209B1
    • 2014-06-24
    • US13285562
    • 2011-10-31
    • Matthew BrownDimitrios Giannakopoulos
    • Matthew BrownDimitrios Giannakopoulos
    • H04J3/02H04L12/54H04L29/06
    • H04L12/413
    • An Ethernet physical layer (PHY) module is provided with a method for transceiving between a 10GBASE-R client interface and a 100G attachment interface. On each of ten client interface logical lanes a 10GBASE-R signal is accepted. Each 10GBASE-R logical lane is demultiplexed into two 5 gigabit per second (Gbps) pseudo 100GBASE-R logical lanes, creating a total of twenty pseudo 100GBASE-R logical lanes. The pseudo 100GBASE-R logical lanes are arranged into n groups of 20/n pseudo 100GBASE-R logical lanes. Further, the pseudo 100GBASE-R logical lanes from each group are arranged into a 100G attachment logical lane. Finally, a 100G attachment logical lane is transmitted at an attachment interface on each of n physical lanes. In the reverse direction, each of n physical lanes accepts a 100G attachment logical lane at the attachment interface, and a de-aggregation process supplies a 10GBASE-R signal on each of ten client interface logical lanes.
    • 以太网物理层(PHY)模块提供了一种用于在10GBASE-R客户端接口和100G附件接口之间进行收发的方法。 在10个客户端界面逻辑通道中的每一个上接受10GBASE-R信号。 每个10GBASE-R逻辑通道被解复用为两个5千兆位/秒(Gbps)伪100GBASE-R逻辑通道,共创建了20个伪100GBASE-R逻辑通道。 伪100GBASE-R逻辑通道被排列成n组20 / n个伪100GBASE-R逻辑通道。 此外,来自每组的伪100GBASE-R逻辑通道被排列成100G附件逻辑通道。 最后,在n个物理通道中的每一个上的附着接口上发送100G附件逻辑通道。 在相反的方向上,n个物理通道中的每一个在附接接口处接受100G的连接逻辑通道,并且去聚合处理在十个客户端接口逻辑通道中的每一个上提供10GBASE-R信号。
    • 8. 发明授权
    • Pipe handling device and safety mechanism
    • 管道处理装置和安全机构
    • US08037932B2
    • 2011-10-18
    • US12683222
    • 2010-01-06
    • William CarrMatthew BrownPer G. Angman
    • William CarrMatthew BrownPer G. Angman
    • E21B19/18
    • E21B19/16E21B19/06E21B19/08
    • A pipe handling assembly includes a pipe engaging apparatus having a pipe gripping mechanism connectable to a top drive such that the top drive transmits rotational movement and axial movement to the pipe gripping mechanism. A pipe handling device is mounted onto the pipe engaging apparatus, the pipe handling device including a link hanger mounted on the pipe engaging apparatus. A link arm has a first end pivotally connectable to the link hanger and an outboard end selected to carry a pipe into a position to be gripped by the pipe engaging apparatus. A bearing isolates rotational movement to the pipe gripping mechanism from the link hanger. A connection rigidly connects the link hanger to the pipe engaging apparatus during operation of the pipe handling assembly. The connection is selected to substantially prevent the link hanger from rotating with the pipe gripping mechanism should the bearing seize.
    • 管道处理组件包括管接合装置,其具有可连接到顶部驱动器的管夹持机构,使得顶部驱动器将旋转运动和轴向运动传递到管道夹持机构。 管道处理装置安装在管道接合装置上,管道处理装置包括安装在管道接合装置上的连接悬挂器。 连杆臂具有可枢转地连接到连杆悬挂器的第一端和被选择用于将管道运送到被管接合装置夹持的位置的外侧端。 轴承将连杆悬挂器的旋转运动与管夹持机构隔离开。 在管道处理组件的操作期间,连接件将连杆架连接到管接合装置。 如果轴承卡住,连接被选择为基本上防止连杆架与管夹持机构一起旋转。
    • 9. 发明申请
    • SYSTEMS AND METHODS FOR PREDICTIVE BUILDING ENERGY MONITORING
    • 用于预测建筑能源监测的系统和方法
    • US20110153103A1
    • 2011-06-23
    • US12646764
    • 2009-12-23
    • Matthew BrownChristopher Barrington-LeighChristopher Porter
    • Matthew BrownChristopher Barrington-LeighChristopher Porter
    • G06F1/26G08B21/00
    • H02J13/0062F24F11/46F24F2140/60G06Q10/04G06Q50/06H02J3/00H02J2003/003Y02B90/2638Y04S40/124
    • A system and method for predictive modeling of building energy consumption provides predicted building energy load values which are determined using kernel smoothing of historical building energy load values for a building using defined scaling factors for scaling predictor variables associated with building energy consumption. Predictor variables may include temperature, humidity, windspeed or direction, occupancy, time, day, date, and solar radiation. Scaling factor values may be defined by optimization training using historical building energy load values and measured predictor variable values for a building. Predicted and measured building energy load values are compared to determine if a preset difference threshold has been exceeded, in which case an alert signal or message is generated and transmitted to electronically and/or physically signal a user. The building energy monitoring system may be integrated with a building automation system, or may be operated as a separate system receiving building energy and predictor variable values.
    • 建筑能耗预测建模的系统和方法提供了预测的建筑物能量负荷值,其使用内部平滑建筑物的历史建筑物能量负荷值确定的建筑物能量负荷值,使用定义的缩放因子来缩放与建筑能耗相关联的预测变量。 预测变量可能包括温度,湿度,风速或方向,占用率,时间,日期,日期和太阳辐射。 缩放因子值可以通过使用历史建筑物能量负荷值和建筑物的测量预测变量值的优化训练来定义。 比较预测和测量的建筑物能量负载值以确定是否已经超过预设的差异阈值,在这种情况下,生成警报信号或者将信息发送到电子和/或物理地向用户发出信号。 建筑能量监测系统可以与楼宇自动化系统集成,或者可以作为接收建筑能量和预测变量值的单独系统来操作。