会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Legged mobile robot
    • 有腿的移动机器人
    • US07366587B2
    • 2008-04-29
    • US10726597
    • 2003-12-04
    • Masatsugu IribeJinichi Yamaguchi
    • Masatsugu IribeJinichi Yamaguchi
    • G06F19/00
    • B62D57/032
    • The characteristics of actuators themselves and the characteristics of controllers for the actuators are dynamically or statically controlled to achieve stable and highly efficient movements. In a stage in which a leg in the flight state is uplifted such that the reactive force from the floor received by the foot sole of the leg is zero, the characteristics of the respective actuators for the knee joint pitch axis and the ankle pitch and roll axes of the leg in the flight state are set for decreasing the low range gain, increasing the quantity of phase lead and for decreasing the viscous resistance of the actuators, in order to impart mechanical passiveness and fast response characteristics. The followup control for the high frequency range may be achieved as the force of impact at the instant of touchdown is buffered.
    • 执行器本身的特性和执行器控制器的特性被动态或静态控制,以实现稳定高效的运动。 在飞行状态下的腿被抬起使得来自腿部足底接收到的地板的反作用力为零的阶段中,用于膝关节俯仰轴线和脚踝俯仰和滚动的各个致动器的特征 为了赋予机械被动性和快速响应特性,设定处于飞行状态的腿的轴线用于降低低范围增益,增加相引线的数量和降低致动器的粘性阻力。 当触地瞬间的冲击力被缓冲时,可以实现高频范围的后续控制。
    • 2. 发明授权
    • Legged mobile robot
    • 有腿的移动机器人
    • US07072740B2
    • 2006-07-04
    • US10732446
    • 2003-12-11
    • Masatsugu IribeJinichi Yamaguchi
    • Masatsugu IribeJinichi Yamaguchi
    • G06F19/00
    • G06N3/008B62D57/032
    • In a mobile robot, the actuator characteristics are dynamically or statically controlled, during motions of an entire robot body in the course of falldown or descent, to realize stable highly efficient motions. In each stage of the falldown motions, the characteristics of each joint site taking part in controlling the stable area are set so that the low range gain is low, the quantity of phase lead is large and the viscous resistance of the motor is large, in such a manner that these joint sites may be positioned to high accuracy in a controller manner to increase orientation stability. This assures the positioning accuracy of the joints as main component for controlling the quantity ΔS/Δt as a reference in controlling the falldown motions of the robot body to increase the motion stability.
    • 在移动机器人中,在整个机器人身体在跌落或下降过程中的运动期间,致动器特性被动态地或静态地控制,以实现稳定的高效运动。 在跌倒运动的每个阶段,设定参与控制稳定区域的各关节部位的特性,使得低范围增益低,相引线量大,电机的粘性阻力大 这样的方式使得这些接合部位可以以控制器方式高精度地定位,以增加取向稳定性。 这确保了接头的定位精度,作为控制数值DeltaS / Deltat的主要部件,作为控制机器人体的跌落运动以提高运动稳定性的基准。
    • 5. 发明授权
    • Legged walking robot and motion control method therefor
    • 有腿行走机器人及其运动控制方法
    • US07278501B2
    • 2007-10-09
    • US10398070
    • 2002-08-01
    • Naoto MoriJinichi Yamaguchi
    • Naoto MoriJinichi Yamaguchi
    • G60F19/00
    • B25J9/1641B62D57/032
    • In a robot having at least one rotating joint (which may have at least two degrees of freedom), in order to perform a high-speed switching operation between a closed link mode and an open link mode with the outside world or a working object, each limb is provided with minimum-required, passive degrees-of-freedom (such as a backlash of a reducer) for removing a dynamic closing error and also the movable range of the limb is properly controlled. Even when an actuator for driving the corresponding joint has no means for obtaining a torque signal, a high-speed switching operation between the closed link mode and the open link mode can be stably achieved.
    • 在具有至少一个旋转接头(其可以具有至少两个自由度)的机器人中,为了在外部世界或工作对象之间执行闭合连接模式和开放链接模式之间的高速切换操作, 每个肢体具有最小要求的被动自由度(例如减速器的间隙),用于消除动态关闭误差,并且肢体的可移动范围被适当地控制。 即使用于驱动对应关节的致动器也没有获得转矩信号的方式,也可以稳定地实现闭环模式和开链模式之间的高速切换操作。
    • 6. 发明授权
    • Motion controller and motion control method for legged walking robot, and robot apparatus
    • 腿式步行机器人运动控制器及运动控制方法及机器人装置
    • US07031806B2
    • 2006-04-18
    • US10935607
    • 2004-09-07
    • Yoshihiro KurokiTatsuzo IshidaJinichi Yamaguchi
    • Yoshihiro KurokiTatsuzo IshidaJinichi Yamaguchi
    • G06F19/00
    • G06N3/008B62D57/032
    • A robot operates accurately while canceling an affect of pitch-axis, rollaxis, and yaw-axis moments, these moments being applied on the robot body during a leg-moving operation such as walking. By calculating a pitch-axis moment and/or a roll-axis moment generated on the robot body at a preset ZMP by set motions of upper limbs, a trunk, and lower limbs, motions of the lower limbs and the trunk for canceling the pitch-axis moment and/or the roll-axis moment: are obtained. Then, by calculating a yaw-axis moment generated on the robot body lying at the preset ZMP by the calculated motions of the lower limbs and the trunk, a motion of the upper limbs for canceling the yaw-axis moment is obtained.
    • 机器人精确地操作,同时消除俯仰轴,滚动轴和偏航轴力矩的影响,这些力矩在诸如行走的腿部运动操作期间施加在机器人体上。 通过计算通过上肢,躯干和下肢的设定运动,预设ZMP在机器人身体上产生的俯仰轴力矩和/或滚动轴力矩,下肢和躯干的运动用于消除俯仰 得到轴向力矩和/或滚动轴力矩。 然后,通过计算通过计算出的下肢和躯干的运动而在机器人身上产生的偏航轴力矩,计算出所述下肢和躯干的运动,得到用于抵消偏航轴力矩的上肢运动。
    • 7. 发明申请
    • Ambulation control apparatus and ambulation control method of robot
    • 机器人的行走控制装置和行走控制方法
    • US20050203667A1
    • 2005-09-15
    • US11126774
    • 2005-05-11
    • Yoshihiro KurokiTatsuzo IshidaJinichi Yamaguchi
    • Yoshihiro KurokiTatsuzo IshidaJinichi Yamaguchi
    • A63H11/00B25J5/00B25J9/16B25J13/00B62D57/032G06F19/00
    • B62D57/032
    • The stability of attitude of a robot can be recovered by an ambulation control apparatus and an ambulation control method according to the invention if it is lost in the course of a gesture for which the upper limbs take a major role. The apparatus and the method obtain the pattern of movement of the entire body for walking by deriving the pattern of movement of the loins from an arbitrarily selected pattern of movement of the feet, the trajectory of the ZMP, the pattern of movement of the trunk and that of the upper limbs. Therefore, according to the invention, a robot can determine the gait of the lower limbs so as to realize a stable walk regardless if the robot is standing upright or walking. Particularly, if the robot is made to gesture, using the upper body half including the upper limbs and the trunk while standing upright, it can determine the gait of the lower limbs so as to make a stable walk in response to such a gait of the upper body half.
    • 如果在上肢起主要作用的手势的过程中丢失了根据本发明的行走控制装置和行走控制方法,则可以恢复机器人姿态的稳定性。 该装置和方法通过从脚的运动的任意选择的模式,ZMP的轨迹,躯干的运动模式和从躯体的移动模式获得腰部的移动模式来获得整个身体的行走模式 上肢的。 因此,根据本发明,机器人可以确定下肢的步态,以便实现稳定的行走,而不管机器人站立直立或行走。 特别地,如果使机器人手势,使用包括上肢和躯干在内的上半身直立,则可以确定下肢的步态,以便响应于这样的步态 上半身
    • 8. 发明授权
    • Legged mobile robot and method and apparatus for controlling the operation thereof
    • 有腿的移动机器人及其操作的控制方法和装置
    • US06832132B2
    • 2004-12-14
    • US10327266
    • 2002-12-20
    • Tatsuzo IshidaYoshihiro KurokiJinichi Yamaguchi
    • Tatsuzo IshidaYoshihiro KurokiJinichi Yamaguchi
    • G06F1900
    • B62D57/032
    • A legged mobile robot is adaptively controlled in its attitude against variable external forces to continue the operation without inversion. When the legged mobile robot kicks an object having a certain mass, such as a ball, the robot is to be prevented from being fallen down by the reactive force from the object. Even if the mass or the repulsion coefficient of the object kicked is unknown, the operation of kicking the object at a sufficiently low speed is carried out at the outset to predict the reactive force produced on actual kicking in order to predict the reactive force produced on actual kicking. The result is that the stability in attitude can be maintained on kicking at an arbitrary speed. The legged mobile robot is able to take part as one of the players in athletic games, such as soccer games, in which each player performs his or her role as the or she is subjected to an external force.
    • 腿式移动机器人可以自适应地控制其对可变外力的姿态,以继续操作而不反转。 当有腿的移动机器人踢出具有一定质量的物体(例如球)时,机器人将被防止来自物体的反作用力下降。 即使被踢的物体的质量或排斥系数是未知的,在一开始就进行以足够低的速度踢物体的操作,以预测在实际踢踢时产生的反作用力,以预测在 实际踢。 结果是,以任意的速度踢出态度的稳定性。 有腿的移动机器人能够作为运动游戏中的玩家之一,例如足球比赛,每个玩家在受到外力的时候执行他或她的角色。
    • 9. 发明授权
    • Work machine safety device
    • 工作机械安全装置
    • US08768581B2
    • 2014-07-01
    • US13699094
    • 2011-05-24
    • Mariko MizuochiAkinori IshiiJinichi Yamaguchi
    • Mariko MizuochiAkinori IshiiJinichi Yamaguchi
    • B66F17/00G01M1/12
    • E02F9/24B66C23/905E02F9/264
    • Disclosed is a safety system for a working machine, which allows an operator to instantaneously, readily and precisely recognize current stability during work including operations of a front working mechanism and swing operations. In a safety system for a working machine, a controller is provided with a ZMP calculating means (60f) for calculating coordinates of a ZMP by using position information, acceleration information and external force information on respective movable portions of a main body, which includes a front working mechanism, and undercarriage, and a stability computing means (60d) for calculating a support polygon formed by plural ground contact points of the working machine with a ground, and, when the ZMP is included in a warning region formed inside a perimeter of the support polygon, producing a tipping warning; the safety system is provided with a display (61d) for displaying a top plan view of the working machine and a ZMP position of the working machine relative to the support polygon; the ZMP calculating means and stability computing means compute and display the ZMP position and the support polygon including the warning region therein; and the safety system produces a tipping warning when the calculated ZMP position is included in the warning region formed inside the perimeter of the support polygon.
    • 公开了一种用于工作机器的安全系统,其允许操作者在工作期间即时,容易和精确地识别当前的稳定性,包括前工作机构和摆动操作的操作。 在工作机械的安全系统中,控制器具有ZMP运算单元(60f),用于通过使用位于主体的各个可动部的位置信息,加速度信息以及外力信息来计算ZMP的坐标,该ZMP计算单元包括: 前工作机构和起落架,以及稳定性计算装置(60d),用于计算由地面上的作业机的多个接地点形成的支撑多边形,并且当ZMP被包括在形成在 支撑多边形,产生倾翻警告; 该安全系统设置有用于显示作业机械的俯视图和工作机器相对于支撑多边形的ZMP位置的显示器(61d) ZMP计算装置和稳定性计算装置计算并显示包括其中的警告区域的ZMP位置和支撑多边形; 并且当计算的ZMP位置包括在形成在支撑多边形的周边内的警告区域中时,安全系统产生倾翻警告。
    • 10. 发明申请
    • WORK MACHINE
    • 工作机器
    • US20140121840A1
    • 2014-05-01
    • US14124787
    • 2012-06-06
    • Mariko MizuochiAkinori IshiiJinichi Yamaguchi
    • Mariko MizuochiAkinori IshiiJinichi Yamaguchi
    • G05B15/02
    • G05B15/02B60P1/045B60Y2200/412E02F9/265G05B13/047G05B13/048G05B17/02G06F17/5018G06F17/5086G06F17/5095
    • To provide a work machine with high stability in which a dynamic balance can be evaluated easily while the influence of a sudden stop of an travel base, an upperstructure and a work front is taken into consideration.A stabilization control calculation unit (60a) and a command value generating unit (60i) are provided in a control device (60) of the work machine. The stabilization control calculation unit (60a) uses a sudden stop model and position information of each movable portion of the travel base and a machine body including the work front (6) to predict a change of stability until reaching a complete stop when a control lever (50) in an operating state is instantaneously brought back to a stop command position, and calculates a motion limit needed to prevent destabilization from occurring at any time instant until reaching the stop. The command value generating unit (60i) corrects the command information to a drive actuator on the basis of the calculation result of the stabilization control calculation unit (60a).
    • 提供具有高稳定性的作业机械,其中考虑到行驶基座,上部结构和工作台面的突然停止的影响,可以容易地评估动平衡。 稳定控制计算单元(60a)和指令值生成单元(60i)设置在作业机械的控制装置(60)中。 稳定控制计算单元(60a)使用行驶底座的每个可移动部分的突然停止模型和位置信息以及包括工作前端(6)的机体来预测稳定性的变化,直到当控制杆 (50)被立即恢复到停止指令位置,并且计算在任何时刻到达停止期间发生防止不稳定所需的动作限制。 指令值生成部(60i)根据稳定化控制计算部(60a)的计算结果,将驱动致动器的指令信息进行校正。