会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • Spectroscopy Method and Spectroscope
    • 光谱法和光谱仪
    • US20090122317A1
    • 2009-05-14
    • US11991542
    • 2006-09-06
    • Masafumi ItoNorihiko NishizawaMasaru HoriToshio GotoHiroyuki Kano
    • Masafumi ItoNorihiko NishizawaMasaru HoriToshio GotoHiroyuki Kano
    • G01N21/31G02B6/26
    • G01N21/39G01J3/02G01J3/0218G01J3/0224G01J3/10G01J3/42G01J2001/4242G01N2201/0697G02B6/2861
    • To achieve an apparatus capable of measuring a light absorption coefficient f a sample with high sensitivity. A ring down spectroscope uses a wavelength-variable femtosecond soliton pulse light source 1. Pulse light is input to a loop optical fiber 6 through a first light waveguide 4 and a wavelength selective switch 5. Ring down pulse light is input to a homodyne detector through the wavelength selective switch 5. On the other hand, pulse light propagating in the first light waveguide 4 is split and input to light waveguides constituting a second light waveguide 20 through an optical directional coupler 8 and a first optical switching element 12. The pulse light propagating in the second light waveguide 20 is input to the homodyne detector as reference light and used for synchronous detection. The plural light waveguides constituting the second light waveguide 20 differ in optical length in accordance with the length of the optical fiber 6, and can slightly change the optical length.
    • 实现能够以高灵敏度测量样品的光吸收系数f的装置。 环形光谱仪使用波长可变飞秒激光脉冲光源1.脉冲光通过第一光波导4和波长选择开关5输入到环形光纤6中。环形脉冲光通过 波长选择开关5.另一方面,在第一光波导4中传播的脉冲光通过光学定向耦合器8和第一光开关元件12被分离并输入到构成第二光波导20的光波导上。脉冲光 在第二光波导20中传播的信号被输入到零差检测器作为参考光,并用于同步检测。 构成第二光波导路20的多个光波导根据光纤6的长度的光学长度不同,并且可以稍微改变光学长度。
    • 4. 发明授权
    • Spectroscopy method and spectroscope
    • 光谱法和光谱仪
    • US07855788B2
    • 2010-12-21
    • US11991542
    • 2006-09-06
    • Masafumi ItoNorihiko NishizawaMasaru HoriToshio GotoHiroyuki Kano
    • Masafumi ItoNorihiko NishizawaMasaru HoriToshio GotoHiroyuki Kano
    • G01B9/02G01J3/45
    • G01N21/39G01J3/02G01J3/0218G01J3/0224G01J3/10G01J3/42G01J2001/4242G01N2201/0697G02B6/2861
    • To achieve an apparatus capable of measuring a light absorption coefficient f a sample with high sensitivity. A ring down spectroscope uses a wavelength-variable femtosecond soliton pulse light source 1. Pulse light is input to a loop optical fiber 6 through a first light waveguide 4 and a wavelength selective switch 5. Ring down pulse light is input to a homodyne detector through the wavelength selective switch 5. On the other hand, pulse light propagating in the first light waveguide 4 is split and input to light waveguides constituting a second light waveguide 20 through an optical directional coupler 8 and a first optical switching element 12. The pulse light propagating in the second light waveguide 20 is input to the homodyne detector as reference light and used for synchronous detection. The plural light waveguides constituting the second light waveguide 20 differ in optical length in accordance with the length of the optical fiber 6, and can slightly change the optical length.
    • 实现能够以高灵敏度测量样品的光吸收系数f的装置。 环形光谱仪使用波长可变飞秒激光脉冲光源1.脉冲光通过第一光波导4和波长选择开关5输入到环形光纤6中。环形脉冲光通过 波长选择开关5.另一方面,在第一光波导4中传播的脉冲光通过光学定向耦合器8和第一光开关元件12被分离并输入到构成第二光波导20的光波导上。脉冲光 在第二光波导20中传播的信号被输入到零差检测器作为参考光,并用于同步检测。 构成第二光波导路20的多个光波导根据光纤6的长度的光学长度不同,并且可以稍微改变光学长度。
    • 9. 发明授权
    • Interference measurement device and measurement method
    • 干涉测量装置及测量方法
    • US09041937B2
    • 2015-05-26
    • US13577044
    • 2011-02-02
    • Masaru HoriMasafumi ItoYasuhiro HigashijimaTakayuki Ohta
    • Masaru HoriMasafumi ItoYasuhiro HigashijimaTakayuki Ohta
    • G01B11/02G01B9/02G01K11/00
    • G01B9/02023G01B9/02058G01B9/0209G01K11/00
    • [Problem to be Solved] To improve the measurement accuracy of an interference measurement device which utilizes interference of light.[Means for Solution] An interference measurement device includes a light source 10 for emitting supercontinuum light (SC light), an optical fiber coupler 11 for splitting the SC light into measurement light and reference light, a dispersion compensation element 12, a drive unit 13 for moving the dispersion compensation element 12, and light-receiving means 14 for measuring an interference waveform produced as a result of interference between the measurement light and the reference light. A measurement object 15 to be measured is an Si substrate having a thickness of 800 μm. The dispersion compensation element 12 is an Si substrate having a thickness of 780 μm. Namely, the dispersion compensation element 12 is formed of the same material as that of the measurement object 15 and is 20 μm thinner than the measurement object 15. The interference caused by reflection on the back surface of the measurement object 15 and reflection on the back surface of the dispersion compensation element 12 has a narrow peak width because wavelength dispersion is cancelled almost completely. Thus, the accuracy in measuring the peak position improves. As a result, the accuracy in measuring temperature, etc., improves.
    • [待解决的问题]提高利用干扰的干涉测量装置的测量精度。 解决方案干扰测量装置包括用于发射超连续光(SC灯)的光源10,用于将SC光分解为测量光和参考光的光纤耦合器11,色散补偿元件12,驱动单元13 用于移动色散补偿元件12和用于测量作为测量光和参考光之间的干涉的结果而产生的干涉波形的光接收装置14。 待测量的测量对象15是厚度为800μm的Si衬底。 色散补偿元件12是厚度为780μm的Si衬底。 也就是说,色散补偿元件12由与测量对象15相同的材料形成,并且比测量对象15薄20μm。由测量对象15的背面上的反射引起的干涉和背面的反射 由于波长色散几乎完全消除,所以色散补偿元件12的表面具有窄的峰宽。 因此,测量峰值位置的精度提高。 结果,测量温度等的精度提高。
    • 10. 发明申请
    • INTERFERENCE MEASUREMENT DEVICE AND MEASUREMENT METHOD
    • 干扰测量装置和测量方法
    • US20120300218A1
    • 2012-11-29
    • US13577044
    • 2011-02-02
    • Masaru HoriMasafumi ItoYasuhiro HigashijimaTakayuki Ohta
    • Masaru HoriMasafumi ItoYasuhiro HigashijimaTakayuki Ohta
    • G01B9/02G01B11/06
    • G01B9/02023G01B9/02058G01B9/0209G01K11/00
    • [Problem to be Solved]To improve the measurement accuracy of an interference measurement device which utilizes interference of light.[Means for Solution]An interference measurement device includes a light source 10 for emitting supercontinuum light (SC light), an optical fiber coupler 11 for splitting the SC light into measurement light and reference light, a dispersion compensation element 12, a drive unit 13 for moving the dispersion compensation element 12, and light-receiving means 14 for measuring an interference waveform produced as a result of interference between the measurement light and the reference light. A measurement object 15 to be measured is an Si substrate having a thickness of 800 μm. The dispersion compensation element 12 is an Si substrate having a thickness of 780 μm. Namely, the dispersion compensation element 12 is formed of the same material as that of the measurement object 15 and is 20 μm thinner than the measurement object 15. The interference caused by reflection on the back surface of the measurement object 15 and reflection on the back surface of the dispersion compensation element 12 has a narrow peak width because wavelength dispersion is cancelled almost completely. Thus, the accuracy in measuring the peak position improves. As a result, the accuracy in measuring temperature, etc., improves.
    • [待解决的问题]提高利用干扰的干涉测量装置的测量精度。 解决方案干扰测量装置包括用于发射超连续光(SC灯)的光源10,用于将SC光分解为测量光和参考光的光纤耦合器11,色散补偿元件12,驱动单元13 用于移动色散补偿元件12和用于测量作为测量光和参考光之间的干涉的结果而产生的干涉波形的光接收装置14。 待测量的测量对象15是厚度为800μm的Si衬底。 色散补偿元件12是厚度为780μm的Si衬底。 也就是说,色散补偿元件12由与测量对象15相同的材料形成,并且比测量对象15薄20μm。由测量对象15的背面上的反射引起的干涉和背面的反射 由于波长色散几乎完全消除,所以色散补偿元件12的表面具有窄的峰宽。 因此,测量峰值位置的精度提高。 结果,测量温度等的精度提高。